Project description:We analyze and report the differences in gene expression between de novo NEPC and ARPC using spatial gene expression analysis techniques (Visium CytAssist, 10x genomics).
Project description:We developed a software package STITCH (https://github.com/snijderlab/stitch) to perform template-based assembly of de novo peptide reads from antibody samples. As a test case we generated de novo peptide reads from protein G purified whole IgG from COVID-19 patients.
Project description:De novo centromeres originate occasionally from non-centromeric regions of chromosomes, providing an excellent model system to study centromeric chromatin. The maize mini-chromosome Derivative 3-3 contains a de novo centromere, which was derived from a euchromatic site on the short arm of chromosome 9 that lacks traditional centromeric repeat sequences. Our previous study found that the CENH3 binding domain of this de novo centromere is only 288 kb with a high-density gene distribution with low-density of transposons. Here we applied next generation sequencing technology to analyze gene transcription, DNA methylation for this region. Our RNA-seq data revealed that active chromatin is not a barrier for de novo centromere formation. Bisulfite-ChIP-seq results indicate a slightly increased DNA methylation level after de novo centromere formation, reaching the level of a native centromere. These results provide insight into the mechanism of de novo centromere formation and subsequent consequences. RNA-seq was carried out using material from seedling and young leaves between control and Derivative 3-3. Bisulfite-ChIP-seq was carried out with anti-CENH3 antibodies using material from young leaves in Derivative 3-3.
Project description:Mammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences result from structural differences in the catalytic domains of the two de novo DNMTs and are not a consequence of differential recruitment to the genome. Molecular dynamics simulations suggest that, in case of human DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. By exchanging arginine to a lysine, the corresponding sidechain in DNMT3B, the sequence preference is reversed, confirming the requirement for arginine at this position. This context-dependent de novo DNA methylation by DNMT3A and DNMT3B, provides additional insights into the complex regulation of methylation patterns.
Project description:We describe a multiple de novo CNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional de novo CNVs. Five such families are studied, which consists of four trios and one singleton. Various array platforms are used to interogate these families to identify de novo CNVs.