Project description:Nucleic acids in wastewater provide a rich source of data for detection and surveillance of microbes. We have longitudinally collected 116 RNA samples from a wastewater treatment plant in Berlin/Germany, from March 2021 to July 2022, and 24 DNA samples from May to July 2022. We tracked human astroviruses, enteroviruses, noroviruses and adenoviruses over time to the level of strains or even individual nucleotide variations, showing how detailed human pathogens can be observed using wastewater. For respiratory pathogens, a broad enrichment panel enabled us to detect waves of RSV, influenza, or common cold coronaviruses in high agreement with clinical data. By applying a profile Hidden Markov Model-based search for novel viruses, we identified more than 100 thousand novel transcript assemblies likely not belonging to known virus species, thus substantially expanding our knowledge of virus diversity. Phylogenetic analysis is shown for bunyaviruses and parvoviruses. Finally, we identify Hundreds of novel protein sequences for CRISPR-associated proteins such as Transposase B, a class of small RNA-guided DNA editing enzymes. Taken together, we present a longitudinal and deep investigation into wastewater-derived genomic sequencing data that underlines the value of sewage surveillance for public health, planetary virome research, and biotechnological potential.
Project description:RNAseq analysis of human immune cells (monocytes CD14+ and B cells CD19+) cocultured with SARS-CoV2, influenza A or Ebola viruses-infected epithelial cells as well as directly infected or SARS-CoV2 single protein transfected epithelial cells
Project description:Ad26.COV2.S has demonstrated durability and clinical efficacy against symptomatic COVID-19 in humans. In this study, we report the correlates of durability of humoral and cellular immune responses in 20 rhesus macaques immunized with single-shot Ad26.COV2.S and the immunogenicity of a booster shot at 8 to 10 months after the initial immunization. Ad26.COV2.S elicited durable binding and neutralizing antibodies as well as memory B cells and long-lived bone marrow plasma cells. Innate immune responses and bone marrow plasma cell responses correlated with durable antibody responses. After Ad26.COV2.S boost immunization, binding and neutralizing antibody responses against multiple SARS-CoV-2 variants increased 31- to 69-fold and 23- to 43-fold, respectively, compared with preboost concentrations. Antigen-specific B cell and T cell responses also increased substantially after the boost immunization. Boosting with a modified Ad26.COV2.S.351 vaccine expressing the SARS-CoV-2 spike protein from the beta variant led to largely comparable responses with slightly higher beta- and omicron-specific humoral immune responses. These data demonstrate that a late boost with Ad26.COV2.S or Ad26.COV2.S.351 resulted in a marked increase in humoral and cellular immune responses that were highly cross-reactive across multiple SARS-CoV-2 variants in rhesus macaques.
Project description:This dataset looks at the transcriptome of in vitro-differentiated primary lung cells infected with SARS-CoV2. Some cells have been treated with the drug Enzalutamide.
Project description:RNA-Seq was carried out in order to obtain the time dependent expression dynamics of SARS-CoV2 (Trondheim strain)-induced transcriptome changes in human lung epithelial Calu-3 cells.
Project description:In this study a gene expression (i.e., RNAseq) analysis was performed in HEK293T-ACE2 cellular model upon infection with viral particle belonging to VOC Delta (MOI: 0.026) for 24 hours in order to have a global picture of the transcriptome landscape in response to early phase of infection of SARS-CoV-2 ( VOC Delta infection and to evaluate the role of Ca2+ in HEK293-ACE2 cellular model and transfer to homeostasis in SARS-COV-2 patients (by Pasqualino de Antonellis1-2* and Veronica Ferrucci 1-2* (first authors) et al. and Massimo Zollo1-2# (corresponding author). Manuscript in preparation 2022 July 15th 2022. Short title "ATP2B1 (PMCA1), regulated by FOXO3, influences susceptibility to severe COVID19".