Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
Project description:The extreme environments of the Tibetan Plateau offer significant challenges to human survival, demanding novel adaptations. While the role of biological and agricultural adaptations in enabling early human colonization of the plateau has been widely discussed, the contribution of pastoralism is less well understood, especially the dairy pastoralism that has historically been central to Tibetan diets. Here, we analyze preserved proteins from the dental calculus of 40 ancient individuals to report the earliest direct evidence of dairy consumption on the Tibetan Plateau. Our palaeoproteomic results demonstrate that dairy pastoralism began on the higher plateau by approximately 3,500 years ago, more than 2,000 years earlier than the recording of dairying in historical sources. With less than 1% of the Tibetan Plateau dedicated to farmland, pastoralism and the milking of ruminants were essential for large-scale human expansion into agriculturally-marginal regions that make up the majority of the plateau. Dairy pastoralism allowed conversion of abundant grasslands into nutritional human food, which facilitating adaptation in the face of extreme climatic and altitudinal pressures, and maximizing the land area available for long-term human occupation of the “roof of the world”.
Project description:Higher incidence of chronic atrophic gastritis (CAG) is generally considered a precancerous lesion of gastric cancer (GC). Therefore, the early diagnosis and treatment of CAG, especially in Tibetan Plateau areas, play an important role in the prevention of GC. The atrophic and non-atrophic gastric mucosal tissue samples from 7 patients with chronic gastritis (CG) and cancer tissue samples from 3 patients with GC were collected. High-throughput sequencing was performed to identify the differentially expressed in lncRNAs, circRNAs, miRNAs, and mRNAs, followed by the construction of competitive endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA network) in CAG. Those differentially expressed mRNAs with the same expression trend in both CAG and GC were further identified. Two datasets (GSE153224 and GSE163416), involving data in non-Tibetan Plateau areas, were used to further screen out plateau-specific mRNAs in CAG, followed by identification of the plateau-specific and ferroptosis related mRNAs. GO and KEGG enrichment analysis were performed to investigate the biological functions of plateau-specific mRNAs in CAG. This study may provide useful information for identifying potential biomarkers for the diagnosis of CAG.
Project description:Higher incidence of chronic atrophic gastritis (CAG) is generally considered a precancerous lesion of gastric cancer (GC). Therefore, the early diagnosis and treatment of CAG, especially in Tibetan Plateau areas, play an important role in the prevention of GC. The atrophic and non-atrophic gastric mucosal tissue samples from 7 patients with chronic gastritis (CG) and cancer tissue samples from 3 patients with GC were collected. High-throughput sequencing was performed to identify the differentially expressed in lncRNAs, circRNAs, miRNAs, and mRNAs, followed by the construction of competitive endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA network) in CAG. Those differentially expressed mRNAs with the same expression trend in both CAG and GC were further identified. Two datasets (GSE153224 and GSE163416), involving data in non-Tibetan Plateau areas, were used to further screen out plateau-specific mRNAs in CAG, followed by identification of the plateau-specific and ferroptosis related mRNAs. GO and KEGG enrichment analysis were performed to investigate the biological functions of plateau-specific mRNAs in CAG. This study may provide useful information for identifying potential biomarkers for the diagnosis of CAG.
Project description:Due to its high altitude and extreme climate conditions, the Tibetan plateau is a region vulnerable to the impact of climate changes and anthropogenic perturbation, thus understanding how its microbial communities function may be of high importance. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes and anthropogenic perturbation. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities in treatment site were distinct, compared with those in control site, e.g. shrubland vs grassland, grazing site vs ungrazing site, or warmer site vs colder site. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes.
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses. 18 samples were collected from 3 plots in Haibei Station, with 6 replicates in each plot
Project description:In this study, we investigated Mn3+-cycling microbial populations enriched from Lake Matano, Indonesia using metagenomics and metaproteomics. Lake Matano contains an active Mn cycle that links the oxic-anoxic interface with anoxic deep waters that are enriched in iron and manganese, and depleted in sulfate, phosphate, and oxidized nitrogen (Crowe et al., 2008; Jones et al., 2011). Sediments were incubated with sequential transfers for ~1 year with Mn3+ as the sole electron acceptor and methane as organic carbon until achieving sediment-free conditions. Here we investigate this novel species of Dechloromonas (Betaproteobacteria), “Candidatus Dechloromonas occultata,” which was the dominant population in enrichment cultures with active Mn3+ reduction. “Ca. D. occultata” expressed electron conduits related to those involved in Fe2+ oxidation (Mto-like), as well as a novel cytochrome c-rich gene cluster putatively involved in extracellular electron transfer, and an atypical nitrous oxide reductase. According to ribosomal counts, Dechloromonas outnumber Geobacter. In terms of functional genes, Dechloromonas expresses a wider variety and number of genes. Dechloromonas therefore seems to have a (selective?) advantage over Geobacter. Previous experiments revealed that Dechloromonas express nitrogen regulators, reductases and scavenging genes, as well as many carbon central metabolic pathways, and aromatic carbon degradation pathways. Dechloromonas is a beta proteobacteria, and these are "experts" in nitrogen metabolism. Geobacter, on the other hand, is well known for carbon degradation. Our previous experiments lead to our hypothesis that Dechloromonas is more active because they are more successful at acquiring nitrogen, a limiting nutrient for Geobacter. This would further suggest that carbon is not the limiting nutrient. We will test 2 hypotheses with the next suite of experiments 1) pyrophosphate supports the community, by allowing carbon fixation , 2)Dechloromonas has a (selective?) advantage over Geobacter. To test this hypothesis, bioreactors will be used to grow biotriplicate cultures of (1)- CH4 vs. pyrophosphate and (2)-CH4 vs. Mn(III) pyrophosphate. Here we have analyzed whole cell pellets using gas phase fractionations on the Q Exactive. Are Dechloromonas capable of out-competing Geobacter when grown in media with methane as the only carbon source bioreactors because they are capable of acquiring more nitrogen? Source of inoculum. Lake Matano is a metal-rich, ancient ocean analog (Crowe et al. 2011, Jones et al. 2011). Organic carbon in Lake Matano is mostly mineralized via methanogenesis before reaching the iron-rich sediments, limiting organic matter bioavailability for metal-reducers (Kuntz et al. 2015). A 15-cm sediment core from 200 m water depth in Lake Matano, Sulawesi Island, Indonesia (02°26′27.1′′S, 121°15′12.3′′E; in situ sediment temperature ~27°C) was sampled in November 2014 and sub-sampled at 5 cm increments. Sediments were sealed in gas-tight Mylar bags with no headspace (Hansen et al. 2000) and stored at 4°C until incubations began in December 2015.
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses.