Project description:The aim of this study was to find candidate genes in A. niger involved in the increase tolerance against ferulic acid in A. niger Fa6
Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources Three conditions (glucose, maltose and xylose) with three biological replicates for A. oryzae and A. niger
Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources
Project description:This SuperSeries is composed of the following subset Series: GSE37758: Aspergillus niger : Control (fructose) vs. steam-exploded sugarcane induction (SEB) GSE37760: Aspergillus niger : Control (fructose) vs. xylose + arabinose (XA) Refer to individual Series
Project description:Gene expression was studied at the periphery, an intermediate zone, and the centre of wild-type and ∆flbA colonies using Affymetrix A. niger whole genome microarrays. We used Affymetrix GeneChip A. niger Geome Arrays and identifed up- and down-regulated genes that may account for the differences between wild-type and ΔflbA colonies.
Project description:This approach aims at searching unidentified regulatory roles of the AreB transcription factor in the overall carbon metabolism of A. niger. A full areB gene deletion mutant was constructed and characterized in A. niger ATCC 1015. Both strains were grown on glucose or glycerol using ammonia as nitrogen source in batch cultivations and the transcriptome was analyzed using three biological replicated transcriptome experiments. Two areB gene deletion replicates, one on glucose and one on glycerol were discarded due to bad quality and therefore not included in the analysis. Samples for RNA extraction were collected and further processed for hybridization in custom designed Affymetrix microarrays containing probes for three Aspergillus species including A. niger. Triplicate batch fermentations with the two Aspergillus niger strains used, the wild type A. niger strain ATCC 1015 and the areB complete gene deletion strain were carried out and transcriptome analysis was performed. Biomass from each batch cultivation was harvested in the exponential phase of growth and further processed for RNA extraction and hybridization on Affymetrix microarrays.