Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:A shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination by a microbial enrichment culture called KB1. The array was constructed by spotting genomic fragments amplified from short-insert libraries of KB1 metagenomic DNA. Subsequently, the microarrays were interrogated with RNA extracted from KB1 during VC dechlorination (VC+methanol), and in the absence of VC (methanol-only). The most differentially expressed spots, and spots with the highest intensities, were then chosen to be sequenced. Sequencing revealed that Dehalococcoides (Dhc) genes involved in transcription, translation and energy generation were up-regulated during VC degradation. Furthermore, the results indicated that the reductive dehalogenase homologous (RDH) gene KB1rdhA14 is the only RDH gene up-regulated upon VC degradation, and that multiple RDH genes were more highly transcribed in the absence of VC. Numerous hypothetical genes from Dehalococcoides were also more highly transcribed in methanol only treatments and indicate that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. Spots with genes from Spirochaetes, Chloroflexi, Geobacter, Methanogens and phage organisms were differentially expressed and sequencing provided information from these uncultivated organisms that can be used to design primers for more targeted studies. This array format is powerful, as it does not require a priori sequence knowledge. This study provides the first report of such arrays being used to investigate transcription in a mixed community, and shows that this array format can be used to screen metagenomic libraries for functionally important genes. 2 Biological replicate experimens conducted 1 month apart. In the first there were 2 dye-swapped duplicates (total 4) of VC+MeOH versus MeOH only. In the second experiment there was one set of dye swapped arrays. Thus 6 arrays were performed including biological replicates, dye swapped replicates and technical duplicates.
Project description:A shotgun metagenome microarray was created and used to investigate gene transcription during vinyl chloride (VC) dechlorination by a microbial enrichment culture called KB1. The array was constructed by spotting genomic fragments amplified from short-insert libraries of KB1 metagenomic DNA. Subsequently, the microarrays were interrogated with RNA extracted from KB1 during VC dechlorination (VC+methanol), and in the absence of VC (methanol-only). The most differentially expressed spots, and spots with the highest intensities, were then chosen to be sequenced. Sequencing revealed that Dehalococcoides (Dhc) genes involved in transcription, translation and energy generation were up-regulated during VC degradation. Furthermore, the results indicated that the reductive dehalogenase homologous (RDH) gene KB1rdhA14 is the only RDH gene up-regulated upon VC degradation, and that multiple RDH genes were more highly transcribed in the absence of VC. Numerous hypothetical genes from Dehalococcoides were also more highly transcribed in methanol only treatments and indicate that many uncharacterized proteins are involved in cell maintenance in the absence of chlorinated substrates. Spots with genes from Spirochaetes, Chloroflexi, Geobacter, Methanogens and phage organisms were differentially expressed and sequencing provided information from these uncultivated organisms that can be used to design primers for more targeted studies. This array format is powerful, as it does not require a priori sequence knowledge. This study provides the first report of such arrays being used to investigate transcription in a mixed community, and shows that this array format can be used to screen metagenomic libraries for functionally important genes.