Project description:the original data of black soldier fly larva mass fermentation with Bacillus subtilis and Aspergillus niger, analyzed by Chinese biotechnology company, published by Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute for research only.
Project description:Genomic and proteomic characterization of the Aspergillus niger isolate, JSC-093350089, collected from U.S. segment surfaces of the International Space Station (ISS) is reported, along with a comparison to the experimentally established strain ATCC 1015. Whole-genome sequencing of JSC-093350089 revealed enhanced genetic variance when compared to publicly available sequences of A. niger strains. Analysis of the isolate’s proteome revealed significant differences in the molecular phenotype of JSC-093350089, including increased abundance of proteins involved in the A. niger starvation response, oxidative stress resistance, cell wall integrity and modulation, and nutrient acquisition. Together, these data reveal the existence of a distinct strain of A. niger onboard the ISS and provide insight into the molecular phenotype that is selected for by melanized fungal species inhabiting spacecraft environments.
Project description:Gene expression was studied at the periphery, an intermediate zone, and the centre of wild-type and ∆flbA colonies using Affymetrix A. niger whole genome microarrays. We used Affymetrix GeneChip A. niger Geome Arrays and identifed up- and down-regulated genes that may account for the differences between wild-type and ΔflbA colonies.
Project description:The genetic foundation of chicken tail feather color is not very well studied to date, though that of body feather color is extensively explored. In the present study, we used a synthetic chicken dwarf line (DW), which was originated from the hybrids between a black tail chicken breed, Rhode Island Red (RIR) and a white tail breed, Dwarf Layer (DL), to understand the genetic rules of the white/black tail color. The DW line still contain the individuals with black or white tails, even if the body feather are predominantly red, after more than ten generation of self-crossing and being selected for the body feather color. We firstly performed four crosses using the DW line chickens including black tail male to female, reciprocal crosses between the black and white, and white male to female to elucidate the inheritance pattern of the white/black tail. We found that (i) the white/black tail feather colors are independent of body feather color and (ii) the phenotype are autosomal simple trait and (iii) the white are dominant to the black in the DW lines. Furtherly, we performed a genome-wide association (GWA) analysis to determine the candidate genomic regions underlying the tail feather color by using black tail chickens from the RIR and DW chickens and white individuals from DW lines.
Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources