Project description:MicroRNA (miRNA) dysregulation is well-documented in psychiatric disease, but miRNA dynamics during adolescent and early adult brain maturation, when symptoms first appear for many of these diseases, remain poorly understood. Here, we use RNA sequencing to examine miRNAs and their mRNA targets in cortex and hippocampus from early, mid-, and late adolescent and adult mice. We also use Quantitative Proteomics by tandem mass tag mass spectrometry (TMT-MS) to examine protein dynamics in cortex from the same subjects.
Project description:Plasma exosomal miRNA may differ between adolescent idiopathic scoliosis patients and healthy individuals. Sequencing analysis was used to find these differential miRNAs.
Project description:We present here a genome-wide map of abnormalities found in diagnostic samples from 45 adults and adolescents with acute lymphoblastic leukemia (ALL). 500K single nucleotide polymorphism (SNP) array analysis uncovered frequent genetic abnormalities, with cryptic deletions constituting half of the detected changes, implying that microdeletions are a characteristic feature of this malignancy. Importantly, the pattern of deletions resembled that recently reported in pediatric ALL, suggesting that adult, adolescent, and childhood cases may be more similar on the genetic level than previously thought. Thus, 70% of the cases displayed deletion of one or more of the CDKN2A, PAX5, IKZF1, ETV6, RB1, and EBF1 genes. Furthermore, several genes not previously implicated in the pathogenesis of ALL were identified as possible recurrent targets of deletion. In total, the SNP array analysis identified 367 genetic abnormalities not corresponding to known copy number polymorphisms, with all but two cases (96%) displaying at least one cryptic change. This SNP array study is the first to specifically address adult and adolescent ALL, and the resolution level is the highest used to date to investigate a malignant hematologic disorder. Our findings provide insights into the leukemogenic process and may be clinically important in adult and adolescent ALL. Most importantly, we report that microdeletions of key genes appear to be a common, characteristic feature of ALL that is shared between different clinical, morphological, and cytogenetic subgroups. Keywords: Genomic analysis of acute lymphoblastic leukemia samples
Project description:Adolescence is marked in part by the ongoing development of the prefrontal cortex (PFC). Binge ethanol use during this critical stage in neurodevelopment induces significant structural changes to the PFC, as well as cognitive and behavioral deficits that can last into adulthood. Previous studies showed that adolescent binge ethanol causes lasting deficits in working memory, decreases in the expression of chromatin remodeling genes responsible for the methylation of histone 3 lysine 36 (H3K36), and global decreases in H3K36 in the PFC. H3K36me3 is present within the coding region of actively-transcribed genes, and safeguards against aberrant, cryptic transcription by RNA Polymerase II. We hypothesize that altered methylation of H3K36 could play a role in adolescent binge ethanol-induced memory deficits. To investigate this at the molecular level, ethanol (4g/kg, i.g.) or water was administered intermittently to adolescent mice. RNA- and ChIP-sequencing were then performed within the same tissue to determine gene expression changes and identify genes and loci where H3K36me3 was disrupted by ethanol. We further assessed ethanol-induced changes at the transcription level with differential exon-use and cryptic transcription analysis – a hallmark of decreased H3K36me3. Here, we found ethanol-induced changes to the gene expression and H3K36me3-regulation of synaptic-related genes in all our analyses. Notably, H3K36me3 was differentially trimethylated between ethanol and control conditions at synaptic-related genes, and Snap25 and Cplx1 showed evidence of cryptic transcription in males and females treated with ethanol during adolescence. Our results provide preliminary evidence that ethanol-induced changes to H3K36me3 during adolescent neurodevelopment may be linked to synaptic dysregulation at the transcriptional level, which may explain the reported ethanol-induced changes to PFC synaptic function.
Project description:GLP-1 agonists are potent glucose-lowering agents, however, their effect on adolescent organisms needs to be clarified Transgenic pigs expressing a dominant-negative GLP receptor randomly assigned for a 90 day treatment trial with liraglutide (0.6-1.8 mg per day)/placebo