Project description:Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines. The goals of this study include: 1. Identify a transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment; 2. Identify a specific transcript signature that discriminated active TB from other inflammatory and infectious diseases; 3. Classify TB signature using modular and pathway analysis tools. Three milliliters of whole blood was collected in Tempus tubes from 12 pediatric streptococcus, 40 pediatric staphylococcus, 31 still’s disease, 82 pediatric systemic lupus erythematosus (SLE) and 28 adult SLE patients. RNA was extracted and globin reduced. Labeled cRNA was hybridized to Illumina Human HT-12 Beadchips. Healthy controls were included to match patients’ demographic data. Genespring software was used to analyze active TB transcript signatures, comparing with healthy controls and other inflammatory and infectious diseases.
Project description:Neurodegenerative diseases of the central nervous system are characterised by pathogenetic cellular and molecular changes in specific areas of the brain that lead to the dysfunction and/or loss of explicit neuronal populations. Despite exhibiting different clinical profiles and selective neuronal loss, common features such as abnormal protein deposition, dysfunctional cellular transport, mitochondrial deficits, glutamate excitotoxicity and inflammation are observed in most, if not all, neurodegenerative disorders, suggesting converging pathways of neurodegeneration. We have generated comparative genome-wide gene expression data for Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, multiple sclerosis, Parkinson’s disease and schizophrenia using an extensive cohort of well characterised post-mortem CNS tissues. The analysis of whole genome expression patterns across these major disorders offers an outstanding opportunity not only to look into exclusive disease specific changes, but more importantly to uncover potential common molecular pathogenic mechanisms that could be targeted for therapeutic gain. Surprisingly, no dysregulated gene that passed our selection criteria was found in common across all 6 diseases using our primary method of analysis. However, 61 dysregulated genes were shared when comparing five and four diseases. Our analysis indicates firstly the involvement of common neuronal homeostatic, survival and synaptic plasticity pathways. Secondly, we report changes to immunoregulatory and immunomodulatory pathways in all diseases. Our secondary method of analysis confirmed significant up-regulation of a number of genes in diseases presenting degeneration and showed that somatostatin was downregulated in all 6 diseases. The latter is supportive of a general role for neuroinflammation in the pathogenesis and/or response to neurodegeneration. Unravelling the detailed nature of the molecular changes regulating inflammation in the CNS is key to the development of novel therapeutic approaches for these chronic conditions.
Project description:Persistent mucosal inflammation and microbial infection are characteristic of Chronic Rhinosinusitis (CRS). Though mucosal microbiota dysbiosis is a characteristic feature of other chronic inflammatory diseases, the relationship between sinus microbiota composition and CRS is unknown. Here we demonstrate, using comparative microbiome profiling of a cohort of CRS patients and healthy subjects, that the sinus microbiota of CRS patients exhibit significantly reduced bacterial diversity. Characteristic of this community collapse is the depletion of multiple, phylogenetically distinct, Lactic Acid Bacteria and the concomitant increase in relative abundance of a single species, Corynebacterium tuberculostearicum. Recapitulating the conditions observed in our human cohort in a murine model confirmed the pathogenic potential of C. tuberculostearicum and the critical necessity for a replete mucosal microbiota to protect against this species. Moreover, we provide evidence that Lactobacillus sakei, identified from our comparative microbiome analyses as a potentially protective species, affords defense against C. tuberculostearicum sinus infection, even in the context of a depleted sinus bacterial community. These studies demonstrate that sinus mucosal health is highly dependent on the composition of the resident microbiota, and identifies a new sino-pathogen and a strong bacterial candidate for therapeutic intervention. A total of 14 samples were profiled for microbiome composition: 7 from non-sinusitis patients, and 7 from patients with clinically diagnosed chronic sinusitis.
Project description:Genome-scale DNA methylation profiling using the Infinium DNA methylation BeadChip platform and samples from normal human eye and five ocular- related diseases
Project description:Genome-scale DNA methylation profiling using the Infinium DNA methylation BeadChip platform and samples from normal human eye and five ocular- related diseases DNA methylation analysis of eye samples from patient suffering ocular diseases (retinal detachment, diabetic retinopathy, glaucoma, uveal melanoma and retinoblastoma) using the Infinium DNA methylation BeadChip platform .
Project description:Preterm birth is a major cause of infant mortality and morbidity. The rate of preterm birth is 5-9% in most developed countries and 12% in the United States with approximately 15 million children born prematurely each year. Globally, prematurity is the second most common cause of death in children under the age of five years. To characterize the transcriptomic changes between preterm and full term neonates, RNA-sequencing was applied altogether to 14 cord blood samples. The analysis of the RNA-sequencing data revealed that the spontaneous preterm delivery resulted in systemic inflammatory responses at the gene and pathway level in the fetus.
Project description:Lameness is an animal welfare issue that incurs substantial financial and environmental costs. This condition is commonly caused by digital dermatitis (DD), sole ulcers (SU), and white line disease (WLD). Susceptibility to these three foot disorders is due in part to genetics, indicating that genomic selection against these foot lesions can be used to reduce lameness prevalence. It is unclear whether selection against foot lesions will lead to increased susceptibility to other common diseases such as mastitis and metritis. Thus, the aim of this study was to determine the genetic correlation between causes of lameness and other common health disorders to identify loci contributing to the correlation. Genetic correlation estimates between SU and DD and between SU and WLD were significantly different from zero (P < 0.05), whereas estimates between DD and mastitis, DD and milk fever, and SU and metritis were suggestive (P < 0.1). All five of these genetic correlation estimates were positive. Two-trait genome-wide association studies (GWAS) for each of these five pairs of traits revealed common regions of association on BTA1 and BTA8 for pairs that included DD or SU as one of the traits, respectively. Other regions of association were unique to the pair of traits and not observed in GWAS for other pairs of traits. The positive genetic correlation estimates between foot disorders and other health disorders imply that selection against foot disorders may also decrease susceptibility to other health disorders. Linkage disequilibrium blocks defined around significant and suggestive SNPs from the two-trait GWAS included genes and QTL that were functionally relevant, supporting that these regions included pleiotropic loci.