Project description:Phytoplankton are significant producers of dissolved organic matter (DOM) in marine ecosystems but the identity and dynamics of this DOM remain poorly constrained. Knowledge on the identity and dynamics of DOM are crucial for understanding the molecular-level reactions at the base of the global carbon cycle. Here we apply emerging analytical and computational tools from metabolomics to investigate the composition of DOM produced by the centric diatom Thalassiosira pseudonana. We assessed both intracellular metabolites within T. pseudonana (the endo-metabolome) and extracellular metabolites released by T. pseudonana (the exo-metabolome). The intracellular metabolites had a more variable composition than the extracellular metabolites. We putatively identified novel compounds not previously associated with T. pseudonana as well as compounds that have previously been identified within T. pseudonana’s metabolic capacity (e.g. dimethylsulfoniopropionate and degradation products of chitin). The resulting information will provide the basis for future experiments to assess the impact of T. pseudonana on the composition of dissolved organic matter in marine environments.
Project description:Bacteria play a key role in the planetary carbon cycle partly because they rapidly assimilate labile dissolved organic matter (DOM) in the ocean. However, knowledge of the molecular mechanisms at work when bacterioplankton metabolize distinct components of the DOM pool is still limited. We, therefore, conducted seawater culture enrichment experiments with ecologically relevant DOM, combining both polymer and monomer model compounds for distinct compound classes. This included carbohydrates (polysaccharides vs. monosaccharides), proteins (polypeptides vs. amino acids), and nucleic acids (DNA vs. nucleotides). We noted pronounced changes in bacterial growth, activity, and transcription related to DOM characteristics. Transcriptional responses differed between compound classes, with distinct gene sets ("core genes") distinguishing carbohydrates, proteins, and nucleic acids. Moreover, we found a strong divergence in functional transcription at the level of particular monomers and polymers (i.e., the condensation state), primarily in the carbohydrates and protein compound classes. These specific responses included a variety of cellular and metabolic processes that were mediated by distinct bacterial taxa, suggesting pronounced functional partitioning of organic matter. Collectively, our findings show that two important facets of DOM, compound class and condensation state, shape bacterial gene expression, and ultimately select for distinct bacterial (functional) groups. This emphasizes the interdependency of marine bacteria and labile carbon compounds for regulating the transformation of DOM in surface waters.
Project description:Dissolved organic matter (DOM) provides carbon substrates and energy sources for sediment microbes driving benthic biogeochemical processes. The interactions between microbes and DOM are dynamic and complex and require the understanding based on fine-scale microbial community and physicochemical profiling. In this study, we characterized the porewater DOM composition in a 300-cm sediment core from the Pearl River estuary, China, and examined the interactions between DOM and archaeal and bacterial communities. DOM composition were highly stratified and associated with changing microbial communities. Compared to bacteria, the amplicon sequence variants of archaea showed significant Pearson correlations (r ≥ 0.65, P < 0.01) with DOM molecules of low H/C ratios, high C number and double bond equivalents, indicating that the distribution of archaea was closely correlated to recalcitrant DOM while bacteria were associated with relatively labile compounds. This was supported by the presence of auxiliary enzyme families essential for lignin degradation and bcrABCD, UbiX genes for anaerobic aromatic reduction in metagenome-assembled genomes of Bathyarchaeia. Our study demonstrates that niche differentiation between benthic bacteria and archaea may have important consequences in carbon metabolism, particularly for the transformation of recalcitrant organic carbon that may be predominant in aged marine sediments.
Project description:Lakes receive large amounts of terrestrially derived dissolved organic matter (tDOM). However, little is known about how aquatic microbial communities interact with tDOM in lakes. Here, by performing microcosm experiments we investigated how microbial community responded to tDOM influx in six Tibetan lakes of different salinities (ranging from 1 to 358 g/l). In response to tDOM addition, microbial biomass increased while dissolved organic carbon (DOC) decreased. The amount of DOC decrease did not show any significant correlation with salinity. However, salinity influenced tDOM transformation, i.e., microbial communities from higher salinity lakes exhibited a stronger ability to utilize tDOM of high carbon numbers than those from lower salinity. Abundant taxa and copiotrophs were actively involved in tDOM transformation, suggesting their vital roles in lacustrine carbon cycle. Network analysis indicated that 66 operational taxonomic units (OTUs, affiliated with Alphaproteobacteria, Actinobacteria, Bacteroidia, Bacilli, Gammaproteobacteria, Halobacteria, Planctomycetacia, Rhodothermia, and Verrucomicrobiae) were associated with degradation of CHO compounds, while four bacterial OTUs (affiliated with Actinobacteria, Alphaproteobacteria, Bacteroidia and Gammaproteobacteria) were highly associated with the degradation of CHOS compounds. Network analysis further revealed that tDOM transformation may be a synergestic process, involving cooperation among multiple species. In summary, our study provides new insights into a microbial role in transforming tDOM in saline lakes and has important implications for understanding the carbon cycle in aquatic environments.
Project description:Natural dissolved organic matter (DOM) comprises a broad range of dissolved organic molecules in aquatic systems and is among the most complex molecular mixtures known. Here we show, by comparing detailed structural fingerprints of individual molecular formulae in DOM from a set of four marine and one freshwater environments, that a major component of DOM is molecularly indistinguishable in these diverse samples. Molecular conformity was not only apparent by the co-occurrence of thousands of identical molecular formulae, but also by identical structural features of those isomers that collectively represent a molecular formula. The presence of a large pool of compounds with identical structural features in DOM is likely the result of a cascade of degradation processes or common synthetic pathways that ultimately lead to the formation of a universal background, regardless of origin and history of the organic material. This novel insight impacts our understanding of long-term turnover of DOM as the underlying mechanisms are possibly universal.