Project description:The Zygnematophyceae are the closest algal relatives of land plants and hence interesting to understand land plant evolution. Species of the genus Serritaenia have an aerophytic lifestyle and form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation. Under laboratory conditions the production of this “sunscreen mucilage” can be induced by ultraviolet B radiation. The present dataset reveals insights into the cellular reaction of this alga to UV radiation (a major stressor in terrestrial habitats) and allows for comparisons with other algae and land plants to draw evolutionary conclusions.
Project description:During the over 300 million years of co-evolution between herbivorous insects and their host plants, a dynamic equilibrium of evolutionary arms race has been established. However, the co-adaptation between insects and their host plants is a complex process, often driven by multiple evolutionary mechanisms. We found that various lepidopteran pests that use maize as a host exhibit differential adaptation to the plant secondary metabolites, benzoxazinoids (BXs). Notably, the Spodoptera genus, including Spodoptera frugiperda (fall armyworm) and Spodoptera litura (cotton leafworm), demonstrate greater tolerance to BXs compared to other insects. Through comparative transcriptomic analysis of the midgut, we identified four candidate genes potentially involved in BXs detoxification in S. frugiperda. Subsequently, we confirmed two UGT genes, Sfru33T10 and Sfru33F32, as key players in BXs detoxification using CRISPR/Cas9 gene-editing technology. Phylogenetic analysis revealed that Sfru33T10 evolved independently within the Noctuidae family and is involved in the glycosylation of HDMBOA, while Sfru33F32 evolved independently within the Spodoptera genus and functions as a key detoxification enzyme responsible for the glycosylation of both DIMBOA and HMBOA. Our study demonstrates that the UGT gene family plays a crucial role in the adaptation of noctuid insects to maize, with multiple independent evolutionary events within the Noctuidae family and the Spodoptera genus contributing significantly to host adaptation.
Project description:Herbivores are predicted to evolve appropriate mechanisms to process the plant secondary compounds (PSCs) in their diet and these mechanisms are likely specific to particular suites of PSCs. Changes in diet composition over evolutionary time should select for appropriate alterations in metabolism of the more recent dietary components. We investigated differences in gene expression profiles in the liver with respect to prior ecological and evolutionary experience with PSCs in the desert woodrat, Neotoma lepida. This woodrat species has populations in the Mojave Desert that have switched from feeding on juniper to feeding on creosote at the end of the Holocene as well as populations in the Great Basin Desert that still feed on the ancestral diet of juniper and are naïve to creosote. Juniper and creosote have notable differences in secondary chemistry. Woodrats from the Mojave and Great Basin Deserts were subjected to a fully crossed feeding trial on diets of juniper and creosote after which their livers were analyzed for gene expression. Hybridization of hepatic mRNAs to laboratory rat microarrays resulted in a total of 20,031 genes that met quality control standards. We analyzed differences in large-scale patterns of liver gene expression with respect to GO term enrichment. Diet had a larger effect on gene expression than population membership. However, woodrats with no prior evolutionary experience to the diet upregulated relatively far more genes compared to animals with prior exposure to that diet. This pattern may be the result of naive animal’s attempting to mitigate physiological damage caused by novel PSCs. fully crossed design, two by two feeding trial with two populations of the desert woodrat (Great Basin and Mojave) fed the two diets of juniper and creosote bush
Project description:High-dose radiation is the main component of glioblastoma therapy. Unfortunately, radio-resistance is a common problem and a major contributor to tumor relapse. Understanding the molecular mechanisms driving response to radiation is critical for identifying regulatory routes that could be targeted to improve treatment response. We conducted an integrated analysis in the U251 and U343 glioblastoma cell lines to map early alterations in the expression of genes at three levels: transcription, splicing, and translation in response to ionizing radiation.
Project description:Birds have a sex chromosome system in which females are heterogametic (ZW) and males are homogametic (ZZ). The differentiation of avian sex chromosomes from ancestral autosomes entailed the loss of most genes from the W chromosome during evolution. However, to what extent mechanisms evolved that counterbalance the consequences of this extensive gene dosage reduction in female birds has remained unclear. Here we report functional in vivo and evolutionary analyses of a Z-chromosome-linked microRNA (miR-2954) with strongly male-biased expression that was previously proposed to play a key role in sex chromosome dosage compensation1. We knocked out miR-2954 in chicken, which resulted in early embryonic lethality of homozygous knockout males, likely due to the highly specific upregulation of dosage-sensitive Z-linked target genes of miR-2954. Our evolutionary gene expression analyses further revealed that these dosage-sensitive target genes have become upregulated on the single Z in female birds during evolution. Altogether, our work unveils a scenario where evolutionary pressures on females following W gene loss led to the evolution of transcriptional upregulation of dosage-sensitive genes on the Z not only in female but also in male birds. The resulting overabundance of transcripts in males resulting from the combined activity of two dosage-sensitive Z gene copies was in turn offset by the emergence of a highly targeted miR-2954-mediated transcript degradation mechanism during avian evolution. Our findings demonstrate that birds have evolved a unique sex chromosome dosage compensation system in which a microRNA has become essential for male survival.
Project description:In recent years there is a growing epidemiological indication of excess risk of cardiovascular disease at low doses of ionizing radiation without a clear-cut threshold. It is proposed that damage to the vascular endothelium is critical in radiation-related cardiovascular diseases. In order to identify and better understand the underlying molecular mechanisms of ionizing radiation on endothelial cells, we performed a microarray analysis on immortalized human coronary artery endothelial cells irradiated with different doses (0.00, 0.05, 0.10, 0.50 and 2.0 Gy). RNA was extracted at different time points after irradiation (1 day, 7 days, 14 days).
Project description:In recent years there is a growing epidemiological indication of excess risk of cardiovascular disease at low doses of ionizing radiation without a clear-cut threshold. It is proposed that damage to the vascular endothelium is critical in radiation-related cardiovascular diseases. In order to identify and better understand the underlying molecular mechanisms of high LET (Fe ions) and low LET (X-ray) radiation on endothelial cells, we performed a microarray analysis on immortalized human coronary artery endothelial cells irradiated with 2.00 Gy and compared them with sham-irradiated samples. RNA was extracted at different time points after irradiation (1 day, 7 days).