Project description:Amongst the various different insect groups, there is remarkable diversity in the number and size of wings. However the development of the basic body plan in insects is similar to a large extent. The genes of the hox complex regulate various pathways to bring about the development or modification of different organs. Ubx, a gene of the bithorax hox complex is expressed in the third thoracic segment of insects and is known to specify the fate of wing appendage in that segment.To understand the role of Ubx and how its regulatory mechanism has evolved through the course of evolution we have compared its genome wide targets in different insect orders. The identification of regulatory pathways and the key players Ubx regulates is crucial to understand how it has controlled wing development across insect orders. Our lab has previously identified direct targets of Ubx in Drosophila using ChIP-chip (Agrawal et al, 2011). To further our knowledge on the role of regulation in development and modification of hind wing appendage we have studied the targets in the hind wings of other insects (silk moth; Lepidoptera and honeybee; Hymenoptera) and performed a comparative analysis. We have employed ChIP followed by illumina sequencing to identify the targets of Ubx in developing hind and fore wing buds of Bombyx larvae. This is a first next generation sequencing study in Lepidoptera in an attempt to understand wing development. Chromatin Immunoprecipitation (ChIP) was used to identify genome wide targets bound by Ubx in Bombyx larval wing buds. The experiment to enrich Ubx bound regions was carried out using a Bombyx N terminal-Ubx specific poylclonal antibody raised in Rabbit and purified against a Protein A column to obtain IgG fraction. An Immunoprecipitation (IP) with Normal Rabbit IgG was used as a negative control to eliminate the regions that pertained to non specific binding to an Immunogloubulin. The normalization of both ChIP and IgG was done against sequenced input chromatin. Two replicates of single end 36 bp reads were sequenced using Ilumina for all the three conditions and for both fore and hind wing tissue samples.The peaks common to both the replicates were considered after applying a FDR cutoff.The fore wing target set was used for comparison with the hind wing targets.
Project description:To visualize glycosylation in the context of the integrin structure, the quantitative site-specific glycosylation profiles of a5b1 integrin were determined and the main representative glycans were mapped onto a homology model of rat a5b1 integrin in its bent-closed inactive conformation.
Project description:This SuperSeries is composed of the following subset Series: GSE36735: Distribution of Drosophila insulator protein BEAF-32 in Wing imaginal tissue (Wildtype) [ChIP-seq] GSE36736: Genome wide transcriptional profiling of BEAF-32 in wing imaginal tissues of wildtype and mutants [expresion array] Refer to individual Series