Project description:BackgroundBile reflux can cause inflammation, gastric mucosa atrophy, and diseases such as stomach cancer. Alkaline bile flowing back into the stomach affects the intragastric environment and can alter the gastric bacterial community. We sought to identify the characteristics of the stomach mucosal microbiota in patients with bile reflux.MethodsGastric mucosal samples were collected from 52 and 40 chronic gastritis patients with and without bile reflux, respectively. The bacterial profile was determined using 16S rRNA gene analysis.ResultsIn the absence of H. pylori infection, the richness (based on the Sobs and Chao1 indices; P <0.05) and diversity (based on Shannon indices; P <0.05) of gastric mucosa microbiota were higher in patients with bile reflux patients than in those without. There was a marked difference in the microbiota structure between patients with and without bile reflux (ANOSIM, R=0.058, P=0.011). While the genera, Comamonas, Halomonas, Bradymonas, Pseudomonas, Marinobacter, Arthrobacter, and Shewanella were enriched in patients with bile reflux, the genera, Haemophilus, Porphyromonas, and Subdoligranulum, were enriched in those without bile reflux.ConclusionOur results demonstrate that bile reflux significantly alters the composition of the gastric microbiota.
Project description:An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization on the maturation of the porcine gastric mucosa are largely unknown. The transcriptome of the oxyntic mucosa of 12 caesarian-derived pigs previously associated with microbiota of different complexity was studied. Pigs received sow blood serum at birth (d0), 2 mL of starter microbiota (10^7 CFU of each Lactob. Amylovorus (LAM), Clostr. glycolicum, and Parabacteroides spp.) on d1-d3 of age and either a placebo inoculant (simple association, SA) or an inoculant consisting of diluted feces of an adult sow (complex association, CA) on d3-d4 of age. Then pigs were fed a moist diet . Gastric samples were obtained at on euthanised pigs at 2 weeks of age.
Project description:Analysis of the effect of using a fruit and vegetable juice concentrate to reduce systemic inflammation in obesity. The hypothesis tested whether the presence of polyphenols in the fruit and vegetable juice concentrate could reduce the expression of systemic inflammatory genes in the blood of Obese patients with high levels of plasma CRP (≥3.0). Results provide evidence that systemic inflammatory genes/ and or pathways may be modulated by the fruit and vegetable juice concentrate.
Project description:An early settlement of a complex gut microbiota can protect against gastro-intestinal dysbiosis, but the effects of neonatal microbiota colonization and early life feeding of medium chain triglycerides on the maturation of the porcine gastric mucosa are largely unknown. The transcriptome of the oxyntic mucosa of 24 caesarian-derived pigs previously associated with microbiota of different complexity and fed a diet fortified or not with medium chain fatty acids was studied. Pigs received pasteurized sow colostrum at birth (d0), 2 mL of starter microbiota (10^7 CFU of each Lactob. Amylovorus (LAM), Clostr. glycolicum, and Parabacteroides spp.) on d1-d3 of age and either a placebo inoculant (simple association, SA) or an inoculant consisting of diluted feces of an adult sow (complex association, CA) on d3-d4 of age. Then half of pigs was fed a moist diet (CON) or, for the remaining half, CTRL fortified in medium chain triglycerides with 7% coconut oil ( MCT). Gastric samples were obtained at on euthanised pigs at 3 weeks of age.
Project description:To explore the effects of bile reflux on gastric cancer and its precancerous lesions, so as to better prevent the occurrence and development of gastric cancer.
Project description:In this study, we investigated the effects of organic vegetable juice supplementation on modulating the microbial community, and how its consumption ameliorates blood lipid profiles in diet-induced obese mice. Here, we analyzed the effect of organic vegetable juice on the microbial community and fatty acid synthesis via animal experiments using diet-induced obese mice and continuous colon simulation system. Organic vegetable juice supplement influenced intestinal bacterial composition from phylum to genus level, including decreased Proteobacteria in the ascending colon in the phylum. At the family level, Akkermansia which are associated with obesity, were significantly augmented in the transverse colon and descending colon compared to the control juice group. In addition, treatment with organic vegetable juice affected predicted lipid metabolism function genes related to lipid synthesis. Organic vegetable juice consumption did not have a significant effect on weight loss but helped reduce epididymis fat tissue and adipocytes. Additionally, blood lipid profiles, such as triglyceride, high-density lipoprotein, and glucose, were improved in the organic vegetable juice-fed group. Expression levels of genes related to lipid synthesis, including SREBP-1, PPARγ, C/EBPα, and Fas, were significantly decreased. Analysis of antioxidant markers, including 8-OHdG and MDA, in the vegetable juice group, indicated that blood lipid profiles were improved by the antioxidant effect. These results suggest that organic vegetable juice supplementation may modulate gut microbial community and reduce the potential role of hyperlipidemia in diet-obese mice.
Project description:Sequencing of 16S ribosomal RNA (rRNA) gene, which has improved the characterization of microbial community, has made it possible to detect a low level Helicobacter pylori (HP) sequences even in HP-negative subjects which were determined by a combination of conventional methods. This study was conducted to obtain a cutoff value for HP colonization in gastric mucosa biopsies and gastric juices by the pyrosequencing method. Corresponding author: Department of Internal Medicine, Seoul National University Bundang Hospital, Seoungnam, Gyeonggi-do, Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea (Tel., +82-31-787-7008; e-mail, nayoungkim49@empas.com). Microbial DNA from gastric mucosal samples [gastric antrum (n=63, mucosal biopsy), follow-up sample on gastric antrum (n=16, mucosal biopsy), and gastric body (n=18, mucosal biopsy)] and gastric juices (n=4, not mucosal biopsy) was amplified by nested PCR using universal bacterial primers, and the 16S rRNA genes were pyrosequenced.
Project description:Compare with the gastric cavity without cancerous transformation in atrophic gastritis, analyze the microbiota and metabolomics changes in intestinal type of gastric cancer under the background of atrophic gastritis, and explore the relevant mechanisms.
Project description:Escherichia coli O157:H7 has caused serious outbreaks of foodborne illness via transmission in a variety of food vehicles, including unpasteurized apple juice, dried salami, and spinach. To understand how this pathogen responds to the multiple stresses of the food environment, we compared global transcription patterns after exposure to apple juice. Transcriptomes of mid-exponential and stationary phase cells were evaluated after 10 minutes in model apple juice (pH3.5) using microarrays probing 4,886 ORFs. Significant changes in gene expression were determined using R/MAANOVA and the Fs test. A total of 331 ORFs were significantly induced upon exposure of cells to model apple juice and included genes involved in the acid and osmotic stress responses as well as the oxidative stress response and envelope stress. Genes involved in the acid and osmotic stress responses, including asr, osmC, osmB, and osmY were significantly induced in response to model apple juice. Genes involved in the envelope stress response, known to be controlled by CpxR (cpxP, degP, and htpX), were significantly induced 2 to 15 fold upon exposure to apple juice, independent of growth phase. Inactivation of CpxRA resulted in a significant decrease in survival of O157:H7 in model apple juice compared to the isogenic parent strain. Of the 331 ORFs induced in model apple juice, 104 are O157-specific ORFs, including those encoding type three secretion effectors espJ, espB, espM2, espL3 and espZ. By elucidating the response of O157:H7 to acidic foods, we hope to gain insights into how this pathogen is able to survive in food matrices and how exposure to foods affects subsequent transmission and virulence. Keywords: stress