Project description:Background: Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood of patients with C. difficile infection. Methods: We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhoea from other causes (DC) and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhoea common and CDI unique gene sets. Results: Diarrhoea groups upregulated innate immune responses with neutrophils at the epicentre. The common signature associated with diarrhoea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45-gene set reflecting downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Conclusions: Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Project description:Toxin A and B from Clostridium difficile are the primary virulence factors in Clostridium difficile disease. The changes in gene transcription of human colon epithelial cells were investigated in vitro in order to better understand the many effects of both toxins.
Project description:Transcriptional analysis of Clostridium difficile R20291 in biofilm formation, planktonic state and grown on blood agar RNA sequencing was performed on Clostridium difficile R20291 in three different conditions: Biofilm formation, plantonic state and grown on blood agar plates. Each condtion has 3 replicates.
Project description:BACKGROUND: Clostridium difficile are gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15-35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. CONCLUSIONS/SIGNIFICANCE: This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described.