Project description:The SH-SY5Y Human neuroblastoma cell line was subcloned from the SK-N-SH cell line, which has been isolated from a bone marrow biopsy of a 4 year-old female patient. To examine the transcriptional regulation by ERRα and ERRγ in human neuronal cells, we investigated chromatin binding regions of ERRαlpha and ERRγ genome-wide in the SH-SY5Y cells. We detected thier target genes, which were largely overlap.
Project description:Normal human tissue samples from ten post-mortem donors were processed to generate total RNA, which was subsequently analyzed for gene expression using Affymetrix U133 plus 2.0 arrays. Donor information: Donor 1 - 25 year old male; donor 2 - 38 year old male; donor 3 - 39 year old female; donor 4 - 30 year old male; donor 5 - 35 year old male; donor 6 - 52 year old male; donor 7 - 50 year old female; donor 8 - 48 year old female; donor 9 - 53 year old female; donor 10 - 23 year old female Keywords: normal human tissue comparison
Project description:Follow-up study of 9 year old IVF children who underwent embryo culture in G3 (Vitrolife) or K-SICM (Cook) medium. Genome-wide DNA methylation profiling of 9 year old IVF children (saliva samples) who had undergone embryo culture in G3 medium (Vitrolife) or K-SICM medium (Lonza). The EPIC array was used to profile the methylome at approximately 850,000 CpG sites across the human genome.
Project description:Normal human tissue samples from ten post-mortem donors were processed to generate total RNA, which was subsequently analyzed for gene expression using Affymetrix U133 plus 2.0 arrays. Donor information: Donor 1 - 25 year old male; donor 2 - 38 year old male; donor 3 - 39 year old female; donor 4 - 30 year old male; donor 5 - 35 year old male; donor 6 - 52 year old male; donor 7 - 50 year old female; donor 8 - 48 year old female; donor 9 - 53 year old female; donor 10 - 23 year old female Experiment Overall Design: Comparison of normal human tissues; 65 tissues represented, including 20 distinct regions of the CNS. This dataset is part of the TransQST collection.
Project description:13,300 year old (Satsurblia) and 9,700 year old (Kotias) genomes from western Georgia along with a 13,700 year old (Bichon) genome from Switzerland.
Project description:DNA methylation is involved in many biological processes during plant growth and development. Here, we report a novel annual growth rhythm that is found in cotton plants grown in different time-of-year. To further study this rhythm in other plants, we use Arabidopsis thaliana for genome-wide bisulfite sequencing. Two A. thaliana DNA samples were extracted from 20 days old whole plant in Feburary and August for bisulphite treatment and further Illumina sequencing.
Project description:Wheat represents one of the most important cereals for mankind. However, since wheat proteins are also the causative agent of several adverse reactions, during the last decades, consumers have shown an increasing interest in the old wheat genotypes, which are generally perceived as more “natural” and healthier than the modern ones. Comparison of nutritional value for modern and old wheat genotypes is still controversial, and to evaluate the real impact of these foods on human health comparative experiments involving old and modern genotypes are desirable. The nutritional quality of grain is correlated with its proteomic composition that depends on the interplay between the genetic characteristics of the plant and external factors related to the environment. We report here the label-free shotgun quantitative comparison of the metabolic protein fractions of two old Sicilian landraces (Russello and Timilia) and the modern variety Simeto, from the 2010-11 and 2011-12 growing seasons. The overall results show that Timilia presents the major differences with respect to the other two genotypes investigated. These differences may be related to different defense mechanisms and some other peculiar properties of these genotypes. On the other hand, our results confirm previous results leading to the conclusion that with respect to a nutritional value evaluation, there is a substantial equivalence between old and modern wheat genotypes.