Project description:Deciphering the evolutionary origins and maintenance of plant diversity in the Alpine Biodiversity Hotspot using next-generation sequencing and high performance computing
Project description:Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. The DNA double strand breaks (DSBs) that initiate meiotic recombination are directed by sequence-specific DNA binding of the PRDM9 protein. Gradual elimination of PRDM9 binding sites by gene conversion is thought to result in the hotspot erosion while mutations affecting DNA binding specificity of PRDM9 will create the new sets of hotspots. To better understand evolutionary turnover of recombination hotspots we mapped DSB hotspots in six inbred mouse strains representing all four major subspecies of Mus musculus and in their F1 hybrids. We found that hotspot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hotspots that become active in the hybrids. As crossovers are disfavored at such hotspots, we propose that sequence divergence generated by hotspot turnover creates impediments for recombination in hybrids, potentially leading to reduction in fertility and eventually, speciation.
Project description:PRDM9, a histone methyltransferase, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we compared activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced. Comparing these two strains, we find that haplotype differences at hotspots leads to qualitative and quantitative changes in PRDM9 binding and activity. Most variants affecting PRDM9Cst binding arose and were fixed in M.m castaneus, suppressing hotspot activity. Furthermore, M.m castaneus x M.m domesticus F1 hybrids exhibit novel hotspots, representing sites of historic evolutionary erosion. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion. Identify position of meiotic H3K4me3 from various sub-species of mice and F1 hybrids from crosses between subspecies. In addition, perform ChIP-seq analysis on the meiosis-specific methyltransferase PRDM9.
Project description:Molecular clocks are the basis for dating the divergence between lineages over macro-evolutionary timescales (~104-108 years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes possess a clock-like behavior. This ‘epimutation-clock’ is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation-clocks recapitulate known topologies and branching times of intra-species phylogenetic trees in the selfing plant A. thaliana and the clonal seagrass Z. marina, which represent the two primary modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.
Project description:Molecular clocks are the basis for dating the divergence between lineages over macro-evolutionary timescales (~104-108 years). However, classical DNA-based clocks tick too slowly to inform us about the recent past. Here, we demonstrate that stochastic DNA methylation changes at a subset of cytosines in plant genomes possess a clock-like behavior. This ‘epimutation-clock’ is orders of magnitude faster than DNA-based clocks and enables phylogenetic explorations on a scale of years to centuries. We show experimentally that epimutation-clocks recapitulate known topologies and branching times of intra-species phylogenetic trees in the selfing plant A. thaliana and the clonal seagrass Z. marina, which represent the two primary modes of plant reproduction. This discovery will open new possibilities for high-resolution temporal studies of plant biodiversity.
Project description:Local breeds retained unique genetic variability important for adaptive potential especially in light of challenges related to climate change. Our objective was to perform, for the first time, a genome-wide diversity characterization using Illumina GoatSNP50 BeadChip of autochthonous Drežnica goat breed from Slovenia. Genetic diversity analyses revealed that the Slovenian Drežnica goat has a distinct genetic identity and is closely related to the neighboring Austrian and Italian alpine breeds. These results expand our knowledge on phylogeny of goat breeds from easternmost part of the European Alps.
2021-06-05 | GSE176157 | GEO
Project description:Soil biodiversity of degraded alpine wetlands
Project description:PRDM9, a histone methyltransferase, initiates meiotic recombination by binding DNA at recombination hotspots and directing the position of DNA double-strand breaks (DSB). The DSB repair mechanism suggests that hotspots should eventually self-destruct, yet genome-wide recombination levels remain constant, a conundrum known as the hotspot paradox. To test if PRDM9 drives this evolutionary erosion, we compared activity of the Prdm9Cst allele in two Mus musculus subspecies, M.m. castaneus, in which Prdm9Cst arose, and M.m. domesticus, into which Prdm9Cst was introduced. Comparing these two strains, we find that haplotype differences at hotspots leads to qualitative and quantitative changes in PRDM9 binding and activity. Most variants affecting PRDM9Cst binding arose and were fixed in M.m castaneus, suppressing hotspot activity. Furthermore, M.m castaneus x M.m domesticus F1 hybrids exhibit novel hotspots, representing sites of historic evolutionary erosion. Together these data support a model where haplotype-specific PRDM9 binding directs biased gene conversion at hotspots, ultimately leading to hotspot erosion.
2015-01-13 | GSE60906 | GEO
Project description:Evolutionary value of marginal alpine plant populations: beyond the genetic depauperation paradigm