Project description:Enterobacter cloacae is a Gram-negative nosocomial pathogen of the ESKAPE (Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp.) priority group with increasing multi-drug resistance via the acquisition of resistance plasmids. However, E. cloacae can also display forms of antibiotic refractoriness, such as heteroresistance and tolerance. Here, we report that E. cloacae displays transient heteroresistance to aminoglycosides, which is accompanied with the formation of small colony variants (SCVs) with increased minimum inhibitor concentration (MIC) of gentamicin and other aminoglycosides used in the clinic, but not other antibiotic classes. To explore the underlying mechanisms, we performed RNA sequencing of heteroresistant bacteria, which revealed global gene-expression changes and a signature of the CpxRA cell envelope stress response. Deletion of the cpxRA two-component system abrogated aminoglycoside heteroresistance and SCV formation, pointing to its indispensable role in these processes. The introduction of a constitutively active allele of cpxA led to high aminoglycoside MICs, consistent with cell envelope stress response driving these behaviours in E. cloacae. Cell envelope stress can be caused by environmental cues, including heavy metals. Indeed, bacterial exposure to copper increased gentamicin MIC in the wild-type, but not in the ΔcpxRA mutant. Moreover, copper exposure also elevated the gentamicin MICs of clinical isolates from bloodstream infections, suggesting that CpxRA- and copper-dependent aminoglycoside resistance is broadly conserved in E. cloacae strains. Altogether, we establish that E. cloacae relies on transcriptional reprogramming via the envelope stress response pathway for transient resistance to a major class of frontline antibiotic.
Project description:Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multi-drug resistant strains of the Gram-negative bacteria, Acinetobacter baumannii. However, colistin resistant A. baumannii isolates can be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered an isogenic pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment that displayed low/intermediate and high levels of colistin resistance, respectively. To understand how increased colistin-resistance arose, we genome sequenced each isolate which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS-family transcriptional regulator. Consequently, transcriptomic analysis of the clinical isolates identified was performed and more than 150 genes as differentially expressed in the colistin-resistant, hns mutant, 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase, but not pmrC, was significantly increased in the hns mutant. This is the first time an H-NS-family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.
Project description:Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually for the last few years. Although studies on mechanisms of polymyxin are expanding, system-wide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapt to colistin (polymyxin E) pressure, we carried out proteomic analysis of Klebsiella pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in Klebsiella pneumoniae involving several pathways, including (i) gluconeogenesis and TCA cycle; (ii) arginine biosynthesis; (iii) porphyrin and chlorophyll metabolism; and (iv) enterobactin biosynthesis. Interestingly, decreased abundance of class A β-lactamases including TEM, SHV-11, SHV-4 were observed in cells treated with colistin. Moreover, we also present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant Klebsiella pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of Klebsiella pneumoniae ATCC BAA 2146, showed missense mutation in crrB. The crrB mutant Ci, which displayed lipid A modification with 4-amino-4-deoxy-L-arabinose (L-Ara4N) and palmitoylation, showed striking increases of CrrAB, PmrAB, PhoPQ, ArnBCADT and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediate colistin resistance, which may further offer valuable information to manage polymyxin resistance.
Project description:The transcriptional, epigenomic, and genomic profiles of K. pneumoniae isolates were characterised to identify novel colistin and carbapenem resistance mechanisms. The genomic DNA and total RNA of the isolates were isolated and sequenced on PacBio.
Project description:We report the transcriptional expression from wild type, ΔphoPQ, and ΔpmrAB to understand their contribution to colistin resistance.
Project description:Enterobacter bugandensis is one of species from the E. cloacae complex (ECC) that has been predominantly associated to neonatal sepsis. A major concern with E. bugandensis and ECC bacteria in general is the frequent appearance of multidrug resistant isolates including those resistant to last-resort antibiotics, such as polymyxins, for which these microbes are in the ESKAPE list of global threat pathogens. Here, we investigated polymyxin B (PmB) resistance and heteroresistance in E. bugandensis by transcriptomics and a gene deletion approach using two clinical isolates. Genes encoded in the CrrAB-regulated operon including crrC and kexD were highly upregulated in both strains in the presence of PmB. We show in one of these isolates that ∆crrC and ∆kexD mutants exhibited lower levels of PmB resistance and heteroresistance than the parental strain. Moreover, the heterologous expression of CrrC and KexD proteins increased PmB resistance in a sensitive E. ludwigii clinical isolate and in the Escherichia coli K12 strain W3110. We also showed that the efflux pump AcrAB and TolC contribute to PmB resistance and heteroresistance. Deletion of the regulatory genes phoPQ and crrAB cause reduced PmB resistance and heteroresistance, while deletion of pmrAB did not have any effect. Our results also reveal that the addition of L-Ara4N into the lipid A, mediated by the arnBCADTEF operon, is critical to determine PmB resistance, while the deletion of eptA, encoding a PEtN transferase had no effect. Finally, PmB resistance did not correlate with pathogenicity in the Galleria mellonella infection model.
Project description:In past, resistance mechanisms have been identified by analysis of resistant isolates or defined mutants. Recently, high-throughput transposon mutagenesis coupled with sequencing (TraDIS-Xpress) is another approach proving useful for elucidating the roles of genes involved in the overall cellular response to a particular stress. In this study, we used TraDIS-Xpress to determine the role played by genes following exposure to colistin stress. Approximately 10^7 cells from the mutant library were inoculated into LB broth at a range of doubling concentrations of colistin ( 0.25 x MIC, 0.5 x MIC, 1 x MIC, 2 X MIC). Experiments were performed with no induction, or with induction using 0.2 or 1 mM of Isopropyl β-D-1-thiogalactopyranoside (IPTG). All experiments were performed in duplicate.
Project description:Heteroresistance of KPC-producing Klebsiella pneumoniae results of three subpopulations associated with a broad landscape of mutations
Project description:We found that the antibiotic colistin acts synergistically with antifungals of the echinocandin class (e.g. aminocandin) on C. albicans cells. In order to elucidate the mode of action of colistin in fungi we performed microarray analysis of samples treated with only aminocandin (0.00125µg/ml) or treated with aminocandin (0.00125µg/ml) and colistin (5µg/ml). We compared: (A). untreated cells to cells treated with aminocandin only; (B). cells treated with aminocandin to cells treated with aminocandin and colistin (which is the focus of this experiment). By comparing those datasets it should be possible to identify genes differentially expressed in response to aminocandin and in response to both drugs. And subsequently to be able to interpret where in the cell colistin acts. (See related experiment in ArrayExpress: E-MEXP-3437 for comparison between untreated cells vs cells treated with aminocandin only.)