Project description:BackgroundYersinia enterocolitica strains responsible for mild gastroenteritis in humans are very diverse with respect to their metabolic and virulence properties. Strain W22703 (biotype 2, serotype O:9) was recently identified to possess nematocidal and insecticidal activity. To better understand the relationship between pathogenicity towards insects and humans, we compared the W22703 genome with that of the highly pathogenic strain 8081 (biotype1B; serotype O:8), the only Y. enterocolitica strain sequenced so far.ResultsWe used whole-genome shotgun data to assemble, annotate and analyse the sequence of strain W22703. Numerous factors assumed to contribute to enteric survival and pathogenesis, among them osmoregulated periplasmic glucan, hydrogenases, cobalamin-dependent pathways, iron uptake systems and the Yersinia genome island 1 (YGI-1) involved in tight adherence were identified to be common to the 8081 and W22703 genomes. However, sets of ~550 genes revealed to be specific for each of them in comparison to the other strain. The plasticity zone (PZ) of 142 kb in the W22703 genome carries an ancient flagellar cluster Flg-2 of ~40 kb, but it lacks the pathogenicity island YAPI(Ye), the secretion system ysa and yts1, and other virulence determinants of the 8081 PZ. Its composition underlines the prominent variability of this genome region and demonstrates its contribution to the higher pathogenicity of biotype 1B strains with respect to W22703. A novel type three secretion system of mosaic structure was found in the genome of W22703 that is absent in the sequenced strains of the human pathogenic Yersinia species, but conserved in the genomes of the apathogenic species. We identified several regions of differences in W22703 that mainly code for transporters, regulators, metabolic pathways, and defence factors.ConclusionThe W22703 sequence analysis revealed a genome composition distinct from other pathogenic Yersinia enterocolitica strains, thus contributing novel data to the Y. enterocolitica pan-genome. This study also sheds further light on the strategies of this pathogen to cope with its environments.
Project description:Yersinia enterocolitica, an important cause of human gastroenteritis generally caused by the consumption of livestock, has traditionally been categorized into three groups with respect to pathogenicity, i.e., nonpathogenic (biotype 1A), low pathogenicity (biotypes 2 to 5), and highly pathogenic (biotype 1B). However, genetic differences that explain variation in pathogenesis and whether different biotypes are associated with specific nonhuman hosts are largely unknown. In this study, we applied comparative phylogenomics (whole-genome comparisons of microbes with DNA microarrays combined with Bayesian phylogenies)to investigate a diverse collection of 94 strains of Y.enterocolitica consisting of 35 human, 35 pig, 15 sheep, and 9 cattle isolates from nonpathogenic, low-pathogenicity, and highly pathogenic biotypes. Analysis confirmed three distinct statistically supported clusters composed of a nonpathogenic clade, a low-pathogenicity clade, and a highly pathogenic clade. Genetic differences revealed 125 predicted coding sequences (CDSs) present in all highly pathogenic strains but absent from the other clades. These included several previously uncharacterized CDSs that may encode novel virulence determinants including a hemolysin, a metalloprotease, and a type III secretion effector protein. Additionally, 27 CDSs were identified which were present in all 47 low-pathogenicity strains and Y.enterocolitica 8081 but absent from all nonpathogenic 1A isolates. Analysis of the core gene set for Y.enterocolitica revealed that 20.8% of the genes were shared by all of the strains, confirming this species as highly heterogeneous, adding to the case for the existence of three subspecies of Y.enterocolitica. Further analysis revealed that Y.enterocolitica does not cluster according to source (host). Data is also available from http://bugs.sgul.ac.uk/E-BUGS-36