ABSTRACT: Training of anti-Staphylococcus aureus phages against S. epidermidis multidrug resistant isolates is associated with inter- and intra-sequence types host range specificity
Project description:Training of anti-Staphylococcus aureus phages against S. epidermidis multidrug-resistant isolates is associated with inter- and intra-sequence type host range specificity
Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
2024-02-19 | GSE255619 | GEO
Project description:Phages against multidrug-resistant bacteria
Project description:Autoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. Here, to determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium. Keywords: wild type without glucose control vs luxS mutant vs luxS mutant with auto-inducer II wild type without glucose control vs luxS mutant vs luxS mutant with auto-inducer II
Project description:In this project we are describing a novel mono- and intralink filter (mi-filter) that is applicable to any kind of crosslinking data and workflow. It stipulates that only proteins for which at least one monolink or intra-protein crosslink has been identified within a given dataset are considered for an inter-protein cross-link and therefore participate in a PPI. We show that this simple and intuitive filter has a dramatic effect on all types of crosslinking-data ranging from single protein complexes, over medium-complexity affinity enrichments to proteome-wide settings and significantly improves false-discovery rates for inter-protein links in all types of XL-MS data.
Project description:Autoinducer 2 (AI-2), a widespread by-product of the LuxS-catalyzed S-ribosylhomocysteine cleavage reaction in the activated methyl cycle, has been suggested to serve as an intra- and interspecies signaling molecule, but in many bacteria AI-2 control of gene expression is not completely understood. Particularly, we have a lack of knowledge about AI-2 signaling in the important human pathogens Staphylococcus aureus and S. epidermidis. Here, to determine the role of LuxS and AI-2 in S. epidermidis, we analyzed genome-wide changes in gene expression in an S. epidermidis luxS mutant and after addition of AI-2 synthesized by over-expressed S. epidermidis Pfs and LuxS enzymes. Genes under AI-2 control included mostly genes involved in sugar, nucleotide, amino acid, and nitrogen metabolism, but also virulence-associated genes coding for lipase and bacterial apoptosis proteins. In addition, we demonstrate by liquid chromatography/mass-spectrometry of culture filtrates that the pro-inflammatory phenol-soluble modulin (PSM) peptides, key virulence factors of S. epidermidis, are under luxS/AI-2 control. Our results provide a detailed molecular basis for the role of LuxS in S. epidermidis virulence and suggest a signaling function for AI-2 in this bacterium. Keywords: wild type without glucose control vs luxS mutant vs luxS mutant with auto-inducer II
Project description:Gene expression profiles were compared based on the rounds of sample RNA amplification procedure. The intra- and inter-method reproducibility was shown by comparing gene expression profiles from two micoarray data. For the repeatability, CVs calculated from multiple microarray data were compared between different amplification methods. The accuracy of each method was estimated from the correlation with RT-PCR results when the same samples were assayed. The range of differential expression was shown using the brain RNA samples derived from an Alzheimer and non-Alzheimer donors.