Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults.
Project description:The present study focuses on the use of a metaproteomic approach to analyse Black Extrinsic Tooth Stains, a specific type of pigmented extrinsic substance, in a cohort of 96 Children. Metaproteomics is a powerful emerging technology that successfully enabled human protein and bacterial identification of this specific dental biofilm using mass spectrometry. 1600 bacterial proteins were identified in black stains (BS) samples and 2058 proteins in dental plaque (DP) samples whereas 607 and 582 human proteins identified in (BS and DP, respectively). 132 genera bacteria in black stains and dental plaque were identified using phylopeptidomic analysis, showing prevalence of Rothia, Kingella, Nesseria and Pseudopropionibatcterium in black stains samples. We additionally confirmed the metaproteomic approach by performing 16S rRNA. In this work, we showed an interesting diversity of the microbiota and proteome including significant difference between Black stain and dental plaque samples.
Project description:Human saliva microbiota is phylogenetically divergent among host individuals yet their roles in health and disease are poorly appreciated. We employed a microbial functional gene microarray, HuMiChip 1.0, to reconstruct the global functional profiles of human saliva microbiota from ten healthy and ten caries-active adults. Saliva microbiota in the pilot population featured a vast diversity of functional genes. No significant distinction in gene number or diversity indices was observed between healthy and caries-active microbiota. However, co-presence network analysis of functional genes revealed that caries-active microbiota was more divergent in non-core genes than healthy microbiota, despite both groups exhibited a similar degree of conservation at their respective core genes. Furthermore, functional gene structure of saliva microbiota could potentially distinguish caries-active patients from healthy hosts. Microbial functions such as Diaminopimelate epimerase, Prephenate dehydrogenase, Pyruvate-formate lyase and N-acetylmuramoyl-L-alanine amidase were significantly linked to caries. Therefore, saliva microbiota carried disease-associated functional signatures, which could be potentially exploited for caries diagnosis. The DMFT INDEX (Decayed, Missing, Filled [DMF] teeth index used in dental epidemiology) values are provided for each sample
2013-08-15 | GSE49875 | GEO
Project description:dental plaque microbial community diversity
Project description:Oral streptococci metabolize carbohydrate to produce organic acids, not only decrease the environmental pH, but also increase osmolality of dental plaque fluid due to tooth demineralization and consequent calcium and phosphate accumulation. Thus, to persevere in the dental plaque, acidogenic bacteria should evolve sophisticated molecular machineries to counter the detrimental effect of elevated osmolality. This study was aimed to obtain a global view on strategies taken by streptococcus mutans to deal with physiologically relevant elevated osmolality, and preserves within a cariogenic dental plaque. We investigated phenotypic change of S. mutans biofilm upon sub-lethal level of hyperosmotic challenge. We found that hyperosmotic condition was able to initiate S. mutans biofilm dispersal by reducing both microbial content and extracellular polysaccharides matrix. We then used DNA microarray with qPCR validation to systemically investigate the underlying molecular machinery of this bacteria in response to hyperosmotic stimuli. Among those identified 50 differentially regulated genes, down-regulation of gtfB and comC were believed to be responsible for the observed biofilm dispersal. Further analysis of microarray data showed significant up-regulation of genes and pathways involved in carbohydrates metabolism. Specific genes involved in heat shock response and acid tolerance were also upregulated, indicating potential cross-talk between hyperosmotic and other environmental stress. Based on the data obtained in this study, we believe that although hyperosmotic condition may induce significant stress response on S. mutans, this cariogenic bacterium has evolved sophisticated molecular machineries to counter those elicited detrimental effects. In the meantime, it will take full advantage of these environmental stimuli to better fit the fluctuating environments within oral cavity, and thus emerge as numeric-predominant bacteria under cariogenic conditions. A six-chip study using total RNA recovered from mid-logarithmic phase of S. mutans UA159 from three separate cultures of strains submitted for 15 minutes to hyperosmotic stimuli (0.4M NaCl) and three separate cultures of strains kept under no stress condition.
Project description:Alterations in intestinal microbiota and intestinal short chain fatty acids profiles have been associated with the pathophysiology of obesity and insulin resistance. Whether intestinal microbiota dysbiosis is a causative factor in humans remains to be clarified We examined the effect of fecal microbial infusion from lean donors on the intestinal microbiota composition, glucose metabolism and small intestinal gene expression. Male subjects with metabolic syndrome underwent bowel lavage and were randomised to allogenic (from male lean donors with BMI<23 kg/m2, n=9) or autologous (reinfusion of own feces, n=9) fecal microbial transplant. Insulin sensitivity and fecal short chain fatty acid harvest were measured at baseline and 6 weeks after infusion. Intestinal microbiota composition was determined in fecal samples and jejunal mucosal biopsies were also analyzed for the host transcriptional response. Insulin sensitivity significantly improved six weeks after allogenic fecal microbial infusion (median Rd: from 26.2 to 45.3 μmol/kg.min, p<0.05). Allogenic fecal microbial infusion increased the overall amount of intestinal butyrate producing microbiota and enhanced fecal harvest of butyrate. Moreover, the transcriptome analysis of jejunal mucosal samples revealed an increased expression of genes involved in a G-protein receptor signalling cascade and subsequently in glucose homeostasis. Lean donor microbial infusion improves insulin sensitivity and levels of butyrate-producing and other intestinal microbiota in subjects with the metabolic syndrome. We propose a model wherein these bacteria provide an attractive therapeutic target for insulin resistance in humans. (Netherlands Trial Register NTR1776).