Project description:YerA41 is a myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified such way that it is an unsuitable template for PCR amplification and sequencing. To determine the YerA41 genome sequence we isolated RNA from phage-infected Y. ruckeri cells at different time points post-infection, and sequenced it. The host-genome specific reads were substracted and de novo assembly was performed on the unaligned reads.
Project description:Project goal is to identify proteomic profiles of Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Four strains (SP-05, CSF007-82, 7959-11 and YRNC-10) of Y. ruckeri were isolated from disease rainbow trout, Oncorhynchus mykiss. Strains, SP-05 and CSF007-82, belong to serotype 1 and biotype 1 (motile and lipase positive), while strains 7959-11 and YRNC-10 belong to serotype 1 and biotype 2 (non-motile and lipase negative) and belong to serotype 1. A single colony of each strain was inoculated into tryptic soy broth (Casein peptone, dipotassium hydrogen phosphate, glucose, sodium chloride, soya peptone, Sigma) and grown at 22 °C with shaking (150 rpm). These starter cultures were then diluted with fresh sterile tryptic soy broth to an optical density (OD 600) of 0.10 ± 0.05. Five hundred microlitres of the diluted starter cultures were inoculated in duplicates, into 25 ml of tryptic soy broth. Cultures were grown overnight at 22 °C with shaking (150 rpm) until the late log phase. Cells were harvested by centrifugation, then washed three times with PBS.