Project description:Soils are a huge reservoir of organic C, and the efflux of CO2 from soils is one of the largest fluxes in the global C cycle. Out of all natural environments, soils probably contain the greatest microbial biomass and diversity, which classifies them as one of the most challenging habitats for microbiologists (Mocali and Benedetti, 2010). Until today, it is not well understood how soil microorganisms will respond to a warmer climate. Warming may give competitive advantage to species adapted to higher temperatures (Rinnan et al., 2009). The mechanisms behind temperature adaptations of soil microbes could be shifts within the microbial community. How microbial communities will ultimately respond to climate change, however, is still a matter of speculation. As a post-genomic approach in nature, metaproteomics allows the simultaneous examination of various protein functions and responses, and therefore is perfectly suited to investigate the complex interplay between respiration dynamics, microbial community architecture, and ecosystem functioning in a changing environment (Bastida et al., 2012). Thereby we will gain new insights into responses to climate change from a microbial perspective. Our study site was located at 910 m a.s.l. in the North Tyrolean Limestone Alps, near Achenkirch, Austria The 130 year-old mountain forests consist of Norway spruce (Picea abies) with inter-spread of European beech (Fagus sylvatica) and silver fir (Abies alba). Three experimental plots with 2 × 2 m warmed- and control- subplots were installed in 2004. The temperature difference between control and warmed plots was set to 4 °C at 5 cm soil depth. Soil was warmed during snow-free seasons. In order to extract proteins from forest soil samples, the SDS–phenol method was adopted as previously described by Keiblinger et al. (2012). Protein extractions were performed from each subplot soil samples. The abundance of protein-assigned microbial phylogenetic and functional groups, were calculated based on the normalized spectral abundance factor (NSAF, Zybailov et al., 2006).
Project description:The p21 RAS subfamily of small GTPases, including KRAS, HRAS, and NRAS, regulates cell proliferation, cytoskeletal organization and other signaling networks, and is the most frequent target of activating mutations in cancer. Activating germline mutations of KRAS and HRAS cause severe developmental abnormalities leading to Noonan, cardio-facial-cutaneous and Costello syndrome, but activating germline mutations of NRAS have not been reported. Autoimmune lymphoproliferative syndrome (ALPS) is the most common genetic disease of lymphocyte apoptosis and causes autoimmunity as well as excessive lymphocyte accumulation, particularly of CD4-, CD8- ab T cells. Mutations in ALPS typically affect CD95 (Fas/APO-1)-mediated apoptosis, one of the extrinsic death pathways involving tumor necrosis factor receptor (TNFR) superfamily proteins, but certain ALPS individuals have no such mutations. We show here that the salient features of ALPS as well as a predisposition to hematological malignancies can be caused by a heterozygous germline Gly13Asp activating mutation of the NRAS oncogene that does not impair CD95-mediated apoptosis. The increase in active, GTP-bound NRAS augments RAF/MEK/ERK signaling which markedly decreases the pro-apoptotic protein BIM and attenuates intrinsic, nonreceptor-mediated mitochondrial apoptosis. Thus, germline activating mutations in NRAS differ from other p21 Ras oncoproteins by causing selective immune abnormalities without general developmental defects. Our observations on the effects of NRAS activation indicate that RAS-inactivating drugs, such as farnesyl-transferase inhibitors (FTIs) should be examined in human autoimmune and lymphocyte homeostasis disorders. Experiment Overall Design: Describes the discovery of a new gene underlying a novel type of autoimmune lymphoproliferative syndrome, and characterizes the mechanisms involved in the pathogenesis of the disease.
Project description:The objective of this study was to identify the different functional genes involved in key biogeochemical cycles in the low Arctic regions. Understanding the microbial diversity in the Arctic region is an important step to determine the effects of climate change on these areas.