Project description:Genome-wide CRISPR-Cas9 knockout screen using TKOv1 sgRNA library performed in isogenic RBM10-proficient and RBM10-deficient HCC827 cells.
Project description:Genome-wide CRISPR-Cas9 knockout screen using TKOv1 sgRNA library was performed in isogenic RBM10-proficient and RBM10-deficient HCC827 cells.
Project description:RNA-seq in isogenic RBM10-proficient and RBM10-deficient cells derived from lung adenocarcinoma cell lines HCC827 (parental and RBM10 knockout; control siRNA and RBM10 siRNA) and NCI-H1299 (parental and RBM10 knockout).
Project description:To investigate if there are new genetic mutations occurred within the HCC827 osimertinib resistant cells compared with the parental cells.
Project description:HCC827 cells were obtained from American Type Culture Collection, and the gefitinib resistant HCC827/GR cells were established by gradient dose treatment for parental cells more than 6 months.Our study established an acquired gefitinib-resistant cell line, which exhibited epithelial-mesenchymal transition (EMT) and stem cell-like properties ann transcriptional sequencing and bioinformatics analysis confirmed that.
Project description:RBM10 is an RNA binding protein that was identified as a component of spliceosome complex, suggesting its potential role in splicing regulation. However, the direct experimental evidence for this function has been lacking. Here we characterized in vivo RBM10-RNA interactions and investigated the role of RBM10 in splicing regulation at the global level. We observed significant RBM10-RNA interactions in the vicinity of splice sites and identified hundreds of splicing changes following perturbation of cellular RBM10 abundance. A RNA splicing map integrating the binding pattern and splicing profiles revealed a significant correlation between RBM10-enhanced exon skipping events and its binding close to the splicing sites of both upstream and downstream introns. Furthermore, we demonstrated the splicing defects in a patient carrying a RBM10 mutation. Overall, our data provided insights into the mechanistic model of RBM10-mediated splicing regulation and established genomic resources for future studies on its function in different pathophysiological contexts.
Project description:To investigate the influence of TET2 knock-down in lung cancer cell line, We performed gene expression profiling analysis using data obtained from RNA-seq of HCC827 cell line and HCC827-TET2-KO cell line.
Project description:RBM10 is an RNA binding protein that was identified as a component of spliceosome complex, suggesting its potential role in splicing regulation. However, the direct experimental evidence for this function has been lacking. Here we characterized in vivo RBM10-RNA interactions and investigated the role of RBM10 in splicing regulation at the global level. We observed significant RBM10-RNA interactions in the vicinity of splice sites and identified hundreds of splicing changes following perturbation of cellular RBM10 abundance. A RNA splicing map integrating the binding pattern and splicing profiles revealed a significant correlation between RBM10-enhanced exon skipping events and its binding close to the splicing sites of both upstream and downstream introns. Furthermore, we demonstrated the splicing defects in a patient carrying a RBM10 mutation. Overall, our data provided insights into the mechanistic model of RBM10-mediated splicing regulation and established genomic resources for future studies on its function in different pathophysiological contexts. We sequenced the mRNA of HEK293 cells and LCL cells, and we determined the RBM10 binding sites using PARCLIP in HEK293 cells. In total we sequenced four mRNA-Seq libraries for KD and two for OE in HEK293 cells; for each of these libraries, we also sequenced one control library. We also sequenced the mRNA of one patient LCL and two normal LCL libraries. Two replicates of PARCLIP sequencing were perfomed.