Project description:tRNA-derived small RNA including tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) plays significant roles in the various molecular mechanisms that underlie certain human diseases. of the generation of tRFs/tiRNAs and their potential roles during Dengue virus (DENV) infection is not yet known. Here, we have performed small RNA sequencing to identify the generation and alterations in tRF expression profiles of DENV infected Huh7 cells. Our results suggest that 733 tiRNAs/tRFs were found to be differentially expressed during DENV infection. Interestingly, 3’tRF population were found to be upregulated and i-tRF population were found to be downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed to analyze the impact of differentially expressed tRFs on DENV pathogenesis. Our results suggest the significant involvement in transcriptional regulation via RNA polymerase II promoter and metabolic pathways. Overall, our study contributes significantly to our understanding of the roles played by tRFs in the complex dynamics of DENV infection.
Project description:Background. Dengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood. Methods. Using a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expression of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection. Results. A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were accessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection. Conclusion. This study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.
Project description:Dengue virus (DENV) is the causative agent of dengue, a mosquito-borne disease that represents a significant and growing public health burden around the world. A unique pathophysiological feature of dengue is immune-mediated enhancement, wherein preexisting immunity elicited by a primary infection can enhance the severity of a subsequent infection by a heterologous DENV serotype. A leading mechanistic explanation for this phenomenon is antibody dependent enhancement (ADE), where sub-neutralizing concentrations of DENV-specific IgG antibodies facilitate entry of DENV into FcR expressing cells such as monocytes, macrophages, and dendritic cells. Accordingly, this model posits that phagocytic mononuclear cells are the primary reservoir of DENV. However, analysis of samples from individuals experiencing acute DENV infection reveals that B cells are the largest reservoir of infected circulating cells, representing a disconnect in our understanding of immune-mediated DENV tropism. In this study, we demonstrate that the expression of a DENV-specific B cell receptor (BCR) renders cells highly susceptible to DENV infection, with the infection-enhancing activity of the membrane-restricted BCR correlating with the ADE potential of the IgG version of the antibody. In addition, we observed that the frequency of DENV-infectable B cells increases in previously flavivirus-naïve volunteers after a primary DENV infection. These findings suggest that BCR-dependent infection of B cells is a novel mechanism immune-mediated enhancement of DENV-infection.
Project description:The objective of this analysis was to determine the transcriptional signature associated with experimental DENV-1 infection in human volunteers. Nine flavivirus naive volunteers were challenged with an attenuated DENV-1 strain - 45AZ5 - and blood collected for RNA extraction and transcriptional analysis on days 0, 8, 10, 14, and 28 post challenge using PAXgene collection tubes. Total RNA was isolated from the collection tubes and subjected to RNAseq analysis to identify genes and gene sets that were differentially expressed across the infection time course.
Project description:The objective of this analysis was to determine the transcriptional signature associated with experimental primary DENV-3 infection in human volunteers. Nine flavivirus naive volunteers were challenged with an attenuated DENV-3 strain - CH53489 - and blood collected for RNA extraction and transcriptional analysis on or around study days 0, 6, 8, 10, 14, and 28 post challenge using PAXgene collection tubes. Total RNA was isolated from the collection tubes and subjected to RNAseq analysis to identify genes and gene sets that were differentially expressed across the infection time course.