Project description:In order to study the similarities and differences in embryonic development between plant-parasitic nematodes and free-living nematodes, we performed RNA-seq on embryos of three plant-parasitic nematodes at a total of 11 stages from the single-cell stage to the J1 stage
Project description:Little is known about plant pathogenic response to parasitic plants, although some parasitic plants affect crop production in certain areas. To study this, we chose Glycine max as the model host plant and investigated changes in expression patterns after parasitization by Cuscuta using microarrays.
Project description:Little is known about plant pathogenic response to parasitic plants, although some parasitic plants affect crop production in certain areas. To study this, we chose Glycine max as the model host plant and investigated changes in expression patterns after parasitization by Cuscuta using microarrays. Transcriptional change of Glycine max stem with and without Cuscuta at 2 different stages were compared
Project description:Transcriptomic changes during haustoria formation in the parasitic plant Phtheirospermum japonicum. We performed RNAseq on Phtheirospermum japonicum seedling infecting and not infecting over 5 time points during haustoria formation for the control treatment and over 3 time points for the ammonium nitrate and 6-Benzylaminipurine. We investigated the transcriptomic changes during haustoria formation and how this is affected in the transcritpome level by nitrate and cytokinin treatment.
Project description:Using rice cultivars Nipponbare, which exhibits resistance to Striga hermonthica (a root parasitic plant that causes devastating loss of yield), and IAC165, which is susceptible, we aim to identify suites of genes underlying susceptibility and resistance to S. hermonthica by profiling changes in gene expression using rice whole genome microarrays. In addition to a functional categorisation of changes in gene expression, genes that were significantly differentially regulated within regions predicted to contain Nipponbare quantitative trait loci for resistance were identified. Keywords: Infected material vs. comparable control tissue, time course
Project description:Background: Epigenetic processes play an important role in the plant response to adverse environmental conditions. A role for DNA hypomethylation has recently been suggested in the pathogenic interaction between bacteria and plants, yet it remains unclear whether this phenomenon reflects a conserved and general plant immunity response. We therefore investigated the role of DNA methylation in the plant defence against damaging parasitic nematodes. Methods and results: Treatment of roots of rice (monocot plant) and tomato (dicot plant) by a nematode-associated molecular pattern (NAMP) from different parasitic nematodes revealed global DNA hypomethylation using ELISA based quantification, suggesting conservation among plants. Focusing on root-knot induced gall tissue in rice, the causal impact of hypomethylation on immunity was revealed by a significantly reduced plant susceptibility upon 5-Azacitidine treatment. Whole genome bisulfite sequencing revealed that hypomethylation was massively present in the CHH context, while absent for CpG or CHG nucleotide contexts. CHH hypomethylated regions were predominantly associated with gene promoter regions, which was not correlated with activated gene expression at the same time point, but rather showed a delayed effect on transcriptional gene activation. Finally, the relevance of CHH hypomethylation in plant defence was confirmed in rice mutants of the RNA-directed DNA methylation pathway (RdDM) and DDM1, which are known to be steering DNA methylation in CHH context. Conclusions: We demonstrated that DNA hypomethylation confers enhanced defence in rice towards root-parasitic nematodes and is likely to be part of the basal NAMP-triggered immunity response in plants.
Project description:The aim of this study is to investigate the effects of dietary plant and animal proteins on gut metabolism and markers for colorectal cancer as well as blood protein metabolites and markers for type 2 diabetes in healthy adults. The study participants will be stratified into three groups with different protein composition in diets: 1) animal 70%/plant 30%; 2) animal 50%/plant 50% and 3) animal 30%/plant 70%. The participants will get part of their diet as ready foods or raw material to promote their compliance. The participants will also get personal advice for their diets. Blood, stool and urine samples will be collected in the beginning and in the end of the 12 week intervention, as well as phenotype measures like BMI, blood pressure and body composition. The participants will also fill food diary before and in the end of the intervention.