Project description:The aim of this work was to access the early immune response triggered by R. microplus larvae attachment in previously selected resistant and susceptible animals in a bovine F2 population derived from Gyr (Bos indicus) x Holstein (Bos taurus) crosses. We used microarray data both to access the changes in gene expression over the course of the first 48 hours after tick infestation as constrasting the phenotypically diferent groups. From a bovine F2 population, six tick-resistant (R) and seven tick-susceptible (S) animals were used in this experiment. Skin biopses were taken at the feeding sites before infestation (0 hour), 24 and 48 hours after tick infestation in each animal.
Project description:Tick-borne diseases (TBDs) are the most common illnesses transmitted by ticks, and the annual number of reported TBD cases continues to increase. The Asian longhorned tick, a vector associated with at least 30 human pathogens, is native to eastern Asia and recently reached the USA as an emerging disease threat. Newly identified tick-transmitted pathogens continue to be reported, raising concerns about how TBDs occur. Interestingly, tick can harbor pathogens without being affected themselves. For viral infections, ticks have their own immune systems that protect them from infection. Meanwhile, tick-borne viruses have evolved to avoid these defenses as they establish themselves within the vector. Here, we show in detail that infecting longhorned ticks with distinct arthropod-borne RNA viruses through two approaches natural blood feeding and injection, all induce the production of vsiRNAs. Dicer2-like homolog plays a role in regulating antiviral RNAi responses as knocking down of this gene enhanced viral replication. Furthermore, we demonstrate that tick antiviral RNAi responses are inhibited through expression heterologous VSR proteins in recombinant SINV. We identify both the virus and tick factors are critical components to understanding TBDs. Importantly, our study introduces a novel, in vivo virus-vector-mouse model system for exploring TBDs in the future.
Project description:This experiment was undertaken to document changes in gene expression in the skin of tick-resistant Brahman (Bos indicus) and tick-susceptible Holstein-Friesian (Bos taurus) cattle prior to, and following, infestation with the cattle tick Rhipicephalus (Boophilus) microplus Experiment Overall Design: RNA was extracted from skin samples of tick-naïve cattle (animals with no previous R.microplus exposure) and tick-infested cattle after a period of successive, heavy infestations with R. microplus. Skin samples taken from tick-infested animals were taken at sites where tick larvae (approximately 24 h old) were attached to the skin sample. Skin samples were of 8 mm diameter and full skin thickness (approximately 10 mm). RNA samples from 12 animals (3 tick-naive Holstein-Friesian, 3 tick-naive Brahman, 3 tick-infested Holstein-Friesian and 3 tick-infested Brahman) were processed and hybridised to individual slides.
Project description:Tick-Borne bacterial and protozoan animal pathogens shape the native microbiome within Hyalomma anatolicum anatolicum and Rhipicephalus microplus tick vectors
Project description:Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this we have created a multi-scale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single cell RNA sequencing, spatial global transcriptional profiling and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.