Project description:The function and retention/reprogramming of epigenetic marks during the germline-to-embryo transition is a key issue in developmental and cellular biology, with relevance to stem cell programming and trans-generational inheritance. In zebrafish, DNAme patterns are programmed in transcriptionally-quiescent early cleavage embryos; paternally-inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal pattern. Here we show that a ‘placeholder’ nucleosome, containing the histone H2A variant H2A.Z(FV) and H3K4me1, occupies virtually all regions lacking DNAme in both sperm and cleavage embryos – residing at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with the Placeholder become either active H3K4me3-marked or silent H3K4me3/K27me3-marked (bivalent). Importantly, functional perturbation causing Placeholder loss confers DNAme acquisition, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent stages (gamete-zygote-cleavage), an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNAme, poising parental genes for either gene-specific activation or facultative repression.
Project description:The function and retention/reprogramming of epigenetic marks during the germline-to-embryo transition is a key issue in developmental and cellular biology, with relevance to stem cell programming and trans-generational inheritance. In zebrafish, DNAme patterns are programmed in transcriptionally-quiescent early cleavage embryos; paternally-inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal pattern. Here we show that a ‘placeholder’ nucleosome, containing the histone H2A variant H2A.Z(FV) and H3K4me1, occupies virtually all regions lacking DNAme in both sperm and cleavage embryos – residing at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with the Placeholder become either active H3K4me3-marked or silent H3K4me3/K27me3-marked (bivalent). Importantly, functional perturbation causing Placeholder loss confers DNAme acquisition, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent stages (gamete-zygote-cleavage), an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNAme, poising parental genes for either gene-specific activation or facultative repression.
Project description:The function and retention/reprogramming of epigenetic marks during the germline-to-embryo transition is a key issue in developmental and cellular biology, with relevance to stem cell programming and trans-generational inheritance. In zebrafish, DNAme patterns are programmed in transcriptionally-quiescent early cleavage embryos; paternally-inherited patterns are maintained, whereas maternal patterns are reprogrammed to match the paternal pattern. Here we show that a ‘placeholder’ nucleosome, containing the histone H2A variant H2A.Z(FV) and H3K4me1, occupies virtually all regions lacking DNAme in both sperm and cleavage embryos – residing at promoters encoding housekeeping and early embryonic transcription factors. Upon genome-wide transcriptional onset, genes with the Placeholder become either active H3K4me3-marked or silent H3K4me3/K27me3-marked (bivalent). Importantly, functional perturbation causing Placeholder loss confers DNAme acquisition, whereas acquisition/expansion of Placeholder confers DNA hypomethylation and improper gene activation. Thus, during transcriptionally quiescent stages (gamete-zygote-cleavage), an H2A.Z(FV)/H3K4me1-containing Placeholder nucleosome deters DNAme, poising parental genes for either gene-specific activation or facultative repression.
Project description:The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.