Project description:To further determine the origin of the increased virulence of Pseudomonas aeruginosa PA14 compared to Pseudomonas aeruginosa PAO1, we report a transcriptomic approach through RNA sequencing. Next-generation sequencing (NGS) has revolutioned sistems-based analsis of transcriptomic pathways. The goals of this study are to compare the transcriptomic profile of all 5263 orthologous genes of these nearly two strains of Pseudomonas aeruginosa.
Project description:ErfA is a transcription factor of Pseudomonas aeruginosa. We here define the genome-wide binding sites of ErfA by DAP-seq in Pseudomonas aeruginosa PAO1 and IHMA87, Pseudomonas chlororaphis PA23, Pseudomonas protegens CHA0 and Pseudomonas putida KT2440.
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: Lung epithelia cells were collected after 10 days of treatment by pseudomonas aeruginosa (PA), RNA-Seq and qRT-PCR were applied to analyze the high-throughput data Results: In general, the mutant type II-like cells expressed higher levels of type I cell markers and lower levels of type II cell markers
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ3] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ1] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
Project description:Oberhardt2008 - Genome-scale metabolic
network of Pseudomonas aeruginosa (iMO1056)
This model is described in the article:
Genome-scale metabolic
network analysis of the opportunistic pathogen Pseudomonas
aeruginosa PAO1.
Oberhardt MA, Puchałka J, Fryer
KE, Martins dos Santos VA, Papin JA.
J. Bacteriol. 2008 Apr; 190(8):
2790-2803
Abstract:
Pseudomonas aeruginosa is a major life-threatening
opportunistic pathogen that commonly infects immunocompromised
patients. This bacterium owes its success as a pathogen largely
to its metabolic versatility and flexibility. A thorough
understanding of P. aeruginosa's metabolism is thus pivotal for
the design of effective intervention strategies. Here we aim to
provide, through systems analysis, a basis for the
characterization of the genome-scale properties of this
pathogen's versatile metabolic network. To this end, we
reconstructed a genome-scale metabolic network of Pseudomonas
aeruginosa PAO1. This reconstruction accounts for 1,056 genes
(19% of the genome), 1,030 proteins, and 883 reactions. Flux
balance analysis was used to identify key features of P.
aeruginosa metabolism, such as growth yield, under defined
conditions and with defined knowledge gaps within the network.
BIOLOG substrate oxidation data were used in model expansion,
and a genome-scale transposon knockout set was compared against
in silico knockout predictions to validate the model.
Ultimately, this genome-scale model provides a basic modeling
framework with which to explore the metabolism of P. aeruginosa
in the context of its environmental and genetic constraints,
thereby contributing to a more thorough understanding of the
genotype-phenotype relationships in this resourceful and
dangerous pathogen.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180020.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.
Project description:Pseudomonas aeruginosa is a virulent opportunistic pathogen responsible for high morbity in COPD, burns , implanted medical devices and cystic fibrosis. Pseudomonas aeruginosa is a problematic colonizer of the human lung. P. aeruginosa produces a phospholipase C (PlcH) that degrades choline-containing lipids such as phosphatidylcholine and sphingomylein that are found in lung surfactant and in host membranes. In this study, we analyzed gene expression in mutants defective in PlcH production (delta-plcH and delta-gbdR) and the wild type when growing in medium with lung surfactant. Pseudomonas aeruginosa was cultured in liquid cultures with aeration in a defined medium with Survanta, a lung surfactant replacement. Cultures were harvested during mid-exponential phase, and RNA was isolated for microarray analysis. The P. aeruginosa strain PAO1 wild type gene expression was compared to expression profiles from delta-gbdR and delta-plcHR deletion mutants, two mutants defective in PlcH production.
Project description:Phagocytosis and killing of the opportunistic pathogen Pseudomonas aeruginosa by polymorphonuclear neutrophils (PMNs) is the major antipseudomonal host defense of vertebrates. By screening a transposon library of the clinical P. aeruginosa isolate TBCF10839 that can grow and replicate in PMNs, a mutant was identified that was most strongly sensitized to killing by PMNs. The inactivated gene PA1572 termed nadK1 was found to encode an ATP:NAD kinase. The transcriptomes of the TBCF10839 wild type and nadK1 mutant were investigated in the presence of PMNs or H2O2. Exposure to H2O2 led to diametrical mRNA expression profiles. H2O2-degrading enzymes were upregulated by wild type, but not by nadK1 mutant. This data demonstrates that NadK1 is crucial for the response of P. aeruginosa to reactive oxygen species. The transcriptomes of Pseudomonas aeruginosa TBCF10839 wild type and nadK1 mutant were comparatively investigated in the presence of polymorphonuclear neutrophils or H2O2 in order to investigate the role of NadK1 in oxidative stress response. These samples represent test samples. The expression profile of Pseudomonas aeruginosa strain TBCF10839 wild type cells, isolated from a Cystic Fibrosis patient, was investigated under standard growth conditions in batch culture in Luria broth (LB) with no treatment. These samples represent reference samples. All samples were analyzed in duplicate.