Project description:We validated patient's tumor-derived cell lines of liposarcoma by analysing copy number alterations using aCGH or WGS and comparing with the original tumor tissues.
Project description:Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between a2,3- and a2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation.
Project description:We validated patient's tumor-derived cell lines of liposarcoma by analysing copy number alterations using aCGH or WGS and comparing with the original tumor tissues. examination of copy number alterations for 2 cell lines, one of the original tumor, one PDX-tumor and its original tumor.
Project description:Next Generation Sequencing of normal human intestinal epithelial cell lines, CRC cell lines and CRC cell lines with hypoxia treatment
Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC.
Project description:Whole genome sequencing (WGS) of tongue cancer samples and cell line was performed to identify the fusion gene translocation breakpoint. WGS raw data was aligned to human reference genome (GRCh38.p12) using BWA-MEM (v0.7.17). The BAM files generated were further analysed using SvABA (v1.1.3) tool to identify translocation breakpoints. The translocation breakpoints were annotated using custom scripts, using the reference GENCODE GTF (v30). The fusion breakpoints identified in the SvABA analysis were additionally confirmed using MANTA tool (v1.6.0).
Project description:This data set was downloaded from MetaboLights (http://www.ebi.ac.uk/metabolights/) accession number MTBLS227 Abstract:"Various cancers such as colorectal cancer (CRC) are associated with alterations in protein glycosylation. CRC cell lines are frequently used to study these (glyco)biological changes and their mechanisms. However, differences between CRC cell lines with regard to their glycosylation have hitherto been largely neglected. Here, we comprehensively characterized the N-glycan profiles of 25 different CRC cell lines, derived from primary tumors and metastatic sites, in order to investigate their potential as glycobiological tumor model systems and to reveal glycans associated with cell line phenotypes. We applied an optimized, high-throughput membrane-based enzymatic glycan release for small sample amounts. Released glycans were derivatized to stabilize and differentiate between a2,3- and a2,6-linked N-acetylneuraminic acids, followed by N-glycosylation analysis by MALDI-TOF(/TOF)-MS. Our results showed pronounced differences between the N-glycosylation patterns of CRC cell lines. CRC cell line profiles differed from tissue-derived N-glycan profiles with regard to their high-mannose N-glycan content but showed a large overlap for complex type N-glycans, supporting their use as a glycobiological cancer model system. Importantly, we could show that the high-mannose N-glycans did not only occur as intracellular precursors but were also present at the cell surface. The obtained CRC cell line N-glycan features were not clearly correlated with mRNA expression levels of glycosyltransferases, demonstrating the usefulness of performing the structural analysis of glycans. Finally, correlation of CRC cell line glycosylation features with cancer cell markers and phenotypes revealed an association between highly fucosylated glycans and CDX1 and/or villin mRNA expression that both correlate with cell differentiation. Together, our findings provide new insights into CRC-associated glycan changes and setting the basis for more in-depth experiments on glycan function and regulation."
Project description:Most molecular cancer therapies act on protein targets but data on the proteome status of patients and cellular models are only beginning to emerge. Here, we profiled the proteomes of 65 colorectal cancer (CRC) cell lines to a depth of >10,000 proteins using mass spectrometry. Integration with proteomes of 90 CRC patients, as well as transcriptomes of 145 cell lines and 89 patients defined integrated CRC subtypes, highlighting cell lines representative of each tumour subtype. Modelling the responses of 52 CRC cell lines to 577 drugs as a function of proteome profiles enabled predicting drug sensitivity for cell lines and patients. Among many novel associations, MERTK was identified as a predictive marker for resistance towards MEK1/2 inhibitors and immunohistochemistry of 1,000 CRC tumours confirmed MERTK as a prognostic survival marker. We provide the proteomic and pharmacological data to the community to e.g. facilitate the design of innovative prospective clinical trials.