Project description:Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Using a mouse model mimicking pediatric antibiotic use, we found that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide altered both host and microbiota development. Early-life PAT accelerated total mass and bone growth, and resulted in progressive changes in gut microbiome diversity, population structure, and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. While control microbiota rapidly adapted to a change in diet, PAT slowed the ecological progression, with delays lasting several months in response to the macrolide. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment.
Project description:Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Using a mouse model mimicking pediatric antibiotic use, we found that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide altered both host and microbiota development. Early-life PAT accelerated total mass and bone growth, and resulted in progressive changes in gut microbiome diversity, population structure, and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. While control microbiota rapidly adapted to a change in diet, PAT slowed the ecological progression, with delays lasting several months in response to the macrolide. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment. C57BL/6J mice received three antibiotic courses: at days 10-15, 28-31, and 37-40 of life, amoxicillin or tylosin.Livers were collected at age 22 weeks, RNA was extracted, and transcriptional differences were measured by microarray analysis.
Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humansM-bM-^@M-^Y age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports The antibiotic resistance gene microarray is custom-designed (Roche NimbleGen), based on a single chip containing 3 internal replicated probe sets of 12 probes per resistance gene, covering the whole 315K 12-plex platform spots.
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:In bacteria, the precise coordination of DNA replication, transcription and translation is mediated by dynamic interactions among the corresponding macromolecular machineries, playing a pivotal role in maintaining cellular homeostasis. Here we showed that such coordination could be hijacked by ribosome antibiotics to trigger secondary damage predominantly contributing to their efficacy, via a yet overlooked reverse-central-dogma pathway. Through the utilization of a self-establishing transcription dynamics profiling method, complemented by genetic and biochemical approaches, we unveil that the disruption of transcription-translation coupling leads to premature stalling of RNA polymerase (RNAP) at genome scale, subsequently triggering extensive genomic instability. Moreover, a distinct subpopulation exhibits hyperactivation of the SOS response, facilitating an inducible evolutionary path towards genetic resistance characterized by a unique mutation spectrum. Our findings reveal the emergence of secondary drug damage resulting from network disorder, and establish a framework to understand antibiotic efficacy and induced mutagenesis from a systems biology perspective.
Project description:Alongside antibiotic resistance, co-selection of antibiotics, biocides, and metal resistance is a growing concern. While hospital wastewater is considered a hotspot for antibiotic-resistant bacteria (ARB) and genes (ARGs), the scenario in India, one of the biggest consumers of antibiotics, remains poorly described. In this study, we used metagenomic sequencing to characterize ARGs and biocide/metal resistance genes (BMRGs) in four wastewater treatment plants (WWTPs) in Jaipur City of India. We observed a significantly lower richness and abundance of ARGs in the influent of a WWTP exclusively receiving hospital wastewater when compared to other three WWTPs involving municipal wastewater treatment. Several tetracycline and macrolide-lincosamide-streptogramin resistance genes were enriched in influents of these three municipal wastewater-related treatment plants, whereas hospital wastewater had a higher abundance of genes conferring resistance to disinfectant-related compounds such as synergize and wex-cide-128, reflecting the patterns of antibiotic/disinfectant use. Of note, in the wastewater system with more chemicals, there was a strong correlation between the numbers of ARGs and BMRGs potentially harbored by common hosts. Our study highlights significant influxes of ARGs from non-hospital sources in Jaipur City, and thus more attention should be paid on the emergence of ARGs in general communities.
Project description:EMG produced TPA metagenomics assembly of the Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India (Antibiotic resistance genes in a polluted lake) data set