Project description:Epithelial Ovarian Cancer (EOC) is the leading cause of gynecologic cancer death. Despite many patients achieving remission with first-line therapy, up to 80% of patients will recur and require additional treatment. Retrospective clinical analysis of OC patients indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. We assessed whether antibiotic (ABX) therapy would impact growth of EOC and sensitivity to cisplatin in murine models. Immune competent or compromised mice were given control or ABX containing water (metronidazole, ampicillin, vancomycin, and neomycin) before being intraperitoneally injected with murine EOC cells. Stool was collected to confirm microbiome disruption and tumors were monitored, and cisplatin therapy was administered weekly until endpoint. EOC tumor-bearing mice demonstrate accelerated tumor growth and resistance to cisplatin therapy in ABX treated compared with nonABX treatment. Stool analysis indicated most gut microbial species were disrupted by ABX treatment except for ABX resistant bacteria. To test for role of the gut microbiome, cecal microbiome transplants (CMTs) of microbiota derived from ABX or nonABX treated mice were used to recolonize the microbiome of ABX treated mice. nonABX cecal microbiome was sufficient to ameliorate the chemoresistance and survival of ABX treated mice indicative of a gut derived tumor suppressor. Mechanistically, tumors from ABX treated compared to nonABX treated mice contained a high frequency of cancer stem cells that were augmented by cisplatin. These studies indicate an intact microbiome provides a gut derived tumor suppressor and maintains chemosensitivity that is disrupted by ABX treatment.
2022-11-01 | GSE200025 | GEO
Project description:Gut microbiome analysis between IgAN patients and healthy controls
Project description:The gut microbiome plays an important role in normal immune function and has been implicated in several autoimmune disorders. Here we use high-throughput 16S rRNA sequencing to investigate the gut microbiome in subjects with multiple sclerosis (MS, n=61) and healthy controls (n=43). Alterations in the gut microbiome in MS include increases in the genera Methanobrevibacter and Akkermansia and decreases in Butyricimonas, and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signaling and NF-kB signaling pathways in circulating T cells and monocytes. Patients on disease-modifying treatment show increased abundances of the genera Prevotella and Sutterella, and decreased Sarcina, compared to untreated patients. MS patients of a second cohort show elevated breath methane compared to controls, consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort. Further study is required to assess whether the observed alterations in the gut microbiome play a role in, or are a consequence of, MS pathogenesis.
Project description:Pouchitis is a common complication for ulcerative colitis (UC) patients with ileal pouch-anal anastomosis (IPAA) surgery. Similarly to IBD, both innate host factors such as genetics, and environmental stimuli including the tissue-associated microbiome have been implicated in the pathogenesis. In this study, we make use of the IPAA model of inflammatory bowel disease (IBD) to carry out a study associating mucosal host gene expression with the microbiome and corresponding clinical outcomes. In order to determine how host gene expression might influence, or be influenced by the tissue associated microbiome, we analyzed 205 IPAA patients with biopsies collected from the pouch and afferent limb for host transcriptomics and 16S rDNA gene sequencing. Metadata included antibiotic use, inflammation score, and clinical classification. To achieve power for a genome-wide microbiome-transcriptome association study, we used principal component analysis to reduce OTUs and host transcripts to eigengenes and eigenclades explaining 50% of observed variance. These were subsequently tested for significant covariation with one another and/or outcome using multivariate linear modeling.
Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis.
Project description:In this study, we compared microRNA (miRNA) profiles of salivary exosomes of patients with oral lichen planus with those of healthy controls. Saliva samples from 16 patients with oral lichen planus and 8 healthy controls were divided into 2 sets and were examined by performing miRNA microarray analysis.
Project description:Clericuzio-type poikiloderma with neutropenia (PN, Mendelian Inheritance in Man (MIM) accession 604173) is a rare genodermatosis associated to mutations in the MPN1 gene. The aim of this experiment was to investigate the the effect of MPN1 mutations on pre-mRNA transcripts maturation. We compared the transcriptome obtained from 2 lymphoblastoid immortal cell lines from PN patients with the one of a lymphoblastoid cell line established from the healthy brother of one of the patient. The trasncriptome was generated by single-end RNA-Seq.
Project description:Targeted bisulphite pyrosequencing of the major histocompatibility complex (MHC) region was performed using CATCH-Seq kits on whole blood DNA isolated from healthy controls and patients with rheumatoid arthritis. Data analysis showed 74 unique and differentially methylated loci (DMLs) in the MHC region of RA patients compared to healthy controls. Further, differentially methylated CpGs in C6orf10 gene were negatively associated with preclinical RA risk factors.
Project description:The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short chain fatty acids (SCFA), and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics; enrofloxacin, cephalexin, paromomycin, and clindamycin; in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble-CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities, associated with specific alterations in mucosal and systemic immunity.