Project description:Group A Streptococcus (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1UK lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections, however the basis for its evolutionary success is not yet fully understood. During the transition to systemic disease, the M1 serotype is known to give rise to spontaneous mutations in the CovRS two-component transcriptional regulation system that confer a fitness advantage during invasive infections. Mutations that inactivate CovS function result in the de-repression of key GAS virulence factors such as Streptolysin O (SLO), a pore-forming toxin and major trigger of inflammasome/interleukin-1-dependent inflammation. Conversely, expression of the streptococcal cysteine protease SpeB, which is required during initial stages of colonisation and onset of invasive disease, is typically lost in such mutants. In this study, we identified and characterised a novel covS mutation detected in three separate invasive M1UK isolates. The resulting CovSAla318Val mutation caused a significant upregulation of SLO resulting in increased inflammasome activation in human THP-1 macrophages, indicating an enhanced inflammatory potential. Surprisingly, SpeB production was unaffected. Site-directed mutagenesis was performed to assess the impact of this mutation on virulence and global gene expression. We found that the CovSAla318Val mutation led to subtle, virulence-specific changes of the CovRS regulon compared to previously characterised covS mutations, highlighting an unappreciated level of complexity in CovRS-dependent gene regulation. Continued longitudinal surveillance is warranted to determine whether this novel covS mutation will expand in the M1UK lineage.
Project description:A new variant of group A Streptococcus (GAS) serotype M1 (designated ‘M1UK’) has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor GAS ‘M1global’ and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 GAS. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing GAS in Asia. A single SNP in the M1UK tmRNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator readthrough in the M1UK lineage. This represents a new paradigm of toxin expression and urges enhanced international surveillance.
Project description:A new variant of group A Streptococcus (GAS) serotype M1 (designated ‘M1UK’) has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor GAS ‘M1global’ and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 GAS. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing GAS in Asia. A single SNP in the M1UK tmRNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator readthrough in the M1UK lineage. This represents a new paradigm of toxin expression and urges enhanced international surveillance.
Project description:A new variant of group A Streptococcus (GAS) serotype M1 (designated ‘M1UK’) has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor GAS ‘M1global’ and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 GAS. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing GAS in Asia. A single SNP in the M1UK tmRNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator readthrough in the M1UK lineage. This represents a new paradigm of toxin expression and urges enhanced international surveillance.
Project description:A new variant of group A Streptococcus (GAS) serotype M1 (designated ‘M1UK’) has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor GAS ‘M1global’ and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 GAS. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing GAS in Asia. A single SNP in the M1UK tmRNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator readthrough in the M1UK lineage. This represents a new paradigm of toxin expression and urges enhanced international surveillance.
Project description:PKD2 Arg803* is the most common mutation in Taiwan ADPKD Cohort. Genotyping of 96 PKD2 Arg803* individuals was performed in Axiom Genome-Wide TWB 2.0 Array Plate to study the existence of founder mutation in Taiwan
Project description:Comparing two subclones (Taiwan clone and Asian-Pacific clone) of CA-MRSA ST59. The Taiwan clone carries the Panton-Valentine leukocidin (PVL) genes, the staphylococcal chromosomal cassette mec (SCCmec) VT and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and is a frequent colonizer of healthy children.