Project description:To define the parameters necessary to design short oligo arrays for maize (Zea mays L.), a species with particularly high nucleotide (SNP) and insertion-deletion (indel) polymorphism frequencies, gene expression was analyzed in for four maize inbred lines using a custom Affymetrix DNA array. Statistically significant interactions between probes and maize inbreds were detected, affecting five or more probes (out of 30 probes per transcript) in the majority of cases, indicating the effect of polymorphisms on gene expresison estimates using this platform. Keywords: genotype effect
Project description:To define the parameters necessary to design short oligo arrays for maize (Zea mays L.), a species with particularly high nucleotide (SNP) and insertion-deletion (indel) polymorphism frequencies, gene expression was analyzed in for four maize inbred lines using a custom Affymetrix DNA array. Statistically significant interactions between probes and maize inbreds were detected, affecting five or more probes (out of 30 probes per transcript) in the majority of cases, indicating the effect of polymorphisms on gene expresison estimates using this platform. Keywords: genotype effect Plant growth, tissue collection and RNA extractions were repeated three times (biological replication) for each of four maize lines: B73, Mo17, W23 and Wf9. Total RNA was labeled according to the Affymetrix Expression Analysis Manual, and hybridized to two CornChips (technical replicates). A total of six replicates (three biological, two technical) of each line were hybridized to the CornChips.
Project description:In this work, we performed high throughput sequencing of small RNA libraries in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) to investigate the response mediated by miRNAs in these plants under control conditions, submergence, drought and alternated drought-submergence or submergence-drought stress. After Illumina sequencing of 8 small RNA libraries, we obtained from 16,139,354 to 46,522,229 raw reads across the libraries. Bioinformatic analysis identified 88 maize miRNAs and 76 miRNAs from other plants differentially expressed in maize and/or in teosinte in response to at least one of the treatments, and revealed that a larger set of miRNAs were regulated in maize than in teosinte in response to submergence and drought stress.
Project description:Maize (Zea mays L.) was hydroponically grown for 14 days and then stressed with hypoxia. Maize roots were sampled after 24 hours and analyzed by mass spectrometry.
2022-05-06 | PXD033386 | Pride
Project description:Single nucleotide polymorphism (SNP) markers for genetic diversity and population structure study in Ethiopian barley (Hordeum vulgare L.) germplasm
Project description:Saha2011- Genome-scale metabolic network of
Zea mays (iRS1563)
This model is described in the article:
Zea mays iRS1563: a
comprehensive genome-scale metabolic reconstruction of maize
metabolism.
Saha R, Suthers PF, Maranas
CD.
PLoS ONE 2011; 6(7): e21784
Abstract:
The scope and breadth of genome-scale metabolic
reconstructions have continued to expand over the last decade.
Herein, we introduce a genome-scale model for a plant with
direct applications to food and bioenergy production (i.e.,
maize). Maize annotation is still underway, which introduces
significant challenges in the association of metabolic
functions to genes. The developed model is designed to meet
rigorous standards on gene-protein-reaction (GPR) associations,
elementally and charged balanced reactions and a biomass
reaction abstracting the relative contribution of all biomass
constituents. The metabolic network contains 1,563 genes and
1,825 metabolites involved in 1,985 reactions from primary and
secondary maize metabolism. For approximately 42% of the
reactions direct literature evidence for the participation of
the reaction in maize was found. As many as 445 reactions and
369 metabolites are unique to the maize model compared to the
AraGEM model for A. thaliana. 674 metabolites and 893 reactions
are present in Zea mays iRS1563 that are not accounted for in
maize C4GEM. All reactions are elementally and charged balanced
and localized into six different compartments (i.e., cytoplasm,
mitochondrion, plastid, peroxisome, vacuole and extracellular).
GPR associations are also established based on the functional
annotation information and homology prediction accounting for
monofunctional, multifunctional and multimeric proteins,
isozymes and protein complexes. We describe results from
performing flux balance analysis under different physiological
conditions, (i.e., photosynthesis, photorespiration and
respiration) of a C4 plant and also explore model predictions
against experimental observations for two naturally occurring
mutants (i.e., bm1 and bm3). The developed model corresponds to
the largest and more complete to-date effort at cataloguing
metabolism for a plant species.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180064.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Transcriptome profiling of Pseudomonas putida KT2440 comparing cells exposed for 1 hour to DIMBOA from maize (Zea mays) to unexposed cells
Project description:The identification of surrogate single nucleotide polymorphism (SNP) markers that can predict responses to preoperative chemoradiotherapy (CRT) in rectal cancer patients. Genome-wide association studies in clinical populations are theoretically capable of identifying markers that are capable of tumor regression after CRT. We used Affymetrix’s SNP Array 6.0 to detail genetic polymorphism of patient’s group showing differential responsiveness to preoperative CRT and profiled SNP biomarkers.
Project description:The identification of surrogate single nucleotide polymorphism (SNP) markers that can predict responses to chemotherapy could enable the efficient selection of patients for various regimens. Genome-wide association studies in clinical populations are theoretically capable of identifying markers that are capable of influencing drug responses. We used Affymetrix’s SNP Array 6.0 to detail genetic polymorphism of patient’s group showing differential responsiveness to various regimens and profiled SNP biomarkers for various regimens.
Project description:The exxpression profilling of chilling responsive and growth regulated microRNAs of maize hybrid ADA313 was conducted. Maize seedling were subjected to chilling temperature then meristem, elongation and mature growth zones were sampled. 321 known maize microRNA expression level were determined and compared between meristem, elongation and mature zones. Determining and validating of chilling responsive microRNAs associated with leaf growth of hybrid maize (Zea mays L.) ADA313