Project description:Draft reference genome sequences of two duck species experiencing recent population declines: long-tailed duck (Clangula hyemalis) and velvet scoter (Melanitta fusca)
Project description:Macaque species share over 93% genome homology with humans and develop many disease phenotypes similar to those of humans, making them valuable animal models for the study of human diseases (e.g.,HIV and neurodegenerative diseases). However, the quality of genome assembly and annotation for several macaque species lags behind the human genome effort. To close this gap and enhance functional genomics approaches, we employed a combination of de novo linked-read assembly and scaffolding using proximity ligation assay (HiC) to assemble the pig-tailed macaque (Macaca nemestrina) genome. This combinatorial method yielded large scaffolds at chromosome-level with a scaffold N50 of 127.5 Mb; the 23 largest scaffolds covered 90% of the entire genome. This assembly revealed large-scale rearrangements between pig-tailed macaque chromosomes 7, 12, and 13 and human chromosomes 2, 14, and 15. We subsequently annotated the genome using transcriptome and proteomics data from personalized induced pluripotent stem cells (iPSCs) derived from the same animal. Reconstruction of the evolutionary tree using whole genome annotation and orthologous comparisons among three macaque species, human and mouse genomes revealed extensive homology between human and pig-tailed macaques with regards to both pluripotent stem cell genes and innate immune gene pathways. Our results confirm that rhesus and cynomolgus macaques exhibit a closer evolutionary distance to each other than either species exhibits to humans or pig-tailed macaques. These findings demonstrate that pig-tailed macaques can serve as an excellent animal model for the study of many human diseases particularly with regards to pluripotency and innate immune pathways.
Project description:Our aim was to classify and quantify transcripts identified in 24-h-cultured primary duck hepatocytes and construct a protein–protein interaction network to serve as a reference for host factors associated with hepadnavirus infection. Methods: The transcriptome of 24h-cultured PDHs was analyzed by the pair-end sequencing on the Illumina Solexa platform. High-quality reads were mapped to the Anas platyrhynchos genome with TopHat v2.0.12 software. TopHat allows multiple alignments per read and default parameters were used. Cufflinks v2.2.1 software was later used for analyses that included transcript assembly and FPKM value calculations to quantify gene expression; this program was also run with default parameters. Results: A total of 87.8 million high-quality reads were obtained from three primary duck hepatocyte samples isolated from three separate 1-day-old Anas domesticus ducklings. The reads (mean length 92.21 bases) were mapped to the Anas platyrhynchos genome. A total of 13,541 genes with > 1 fragments per kilobase of transcript per million mapped reads values were expressed in the 24-h-cultured primary duck hepatocyte samples.Using gene ontology analysis, expressed genes were assigned to functional categories. A total of 182 genes expressed in all three separate primary duck hepatocyte samples were identified as liver-specific genes. Conclusions: Transcriptome and gene ontology analyses of 24-h-cultured primary duck hepatocytes indicate that these cells retain hepatocyte-specific biological characteristics and can be used as a model system for hepadnavirus infection. A novel protein–protein interaction network suggests that host factors regulating or inhibiting innate immunity are directly associated with hepadnavirus.