Project description:Background: Patients with cystic fibrosis (CF) have an elevated lifetime risk of infection and disease caused by nontuberculous mycobacteria (NTM). Currently, there is no method to predict whether patients with cystic fibrosis will develop disease related to non-tuberculous mycobacteria. In non cystic fibrosis populations, several genetic susceptibility factors have been described. In this study, we examined whether patients with cystic fibrosis demonstrate a similar pattern of genetic susceptibility and explored host immune-related biomarkers predictive of NTM pulmonary disease (NTM-PD). Methods: We evaluated whole blood gene expression using bulk RNA-seq in a cohort of CF patients at the time of first isolation of NTM. Differential gene expression was compared in patients who did (n = 12) vs. did not (n= 30) develop NTM-PD following first NTM growth. Results: No differences in demographics or composition of white blood cell sample populations at the time of sample collection were identified between groups. There were no significant differences in the expression of genes previously reported to confer susceptibility to NTM-PD in non-CF populations. However, CF patients who went on to develop NTM-PD had higher expression of genes involved in the interferon ( and ), tumor necrosis factor, and IL6 STAT3 JAK pathways. Conclusion: Patients with CF who develop NTM-PD have increased expression of genes involved in innate immunity, in contrast to non-CF populations where these responses seem to be suppressed.
2022-12-14 | GSE205161 | GEO
Project description:Clinical Isolates of Rare Non-tuberculous Mycobacteria
Project description:Mycobacterium abscessus (Mabs) is a fast-growing, non-tuberculous mycobacterium responsible for serious lung infections in patients with cystic fibrosis. This bacterium evolves during the pulmonary infection between a smooth (S) and a rough morphotype (R). We have previously isolated the lsr2 gene as being differentially expressed during the transition between Mabs-S and Mabs-R. lsr2 encodes a pleiotropic transcription factor belonging to the superfamily of nucleoid-associated proteins (NAPs), which play an essential role in the hierarchical organization of bacterial chromosomes. The present study aims to unravel the molecular role of Lsr2 in regulating expression of gene involved in the adaptation and the pathobiology of Mabs using both RNA-Seq and ChIP-seq.
Project description:Mycobacterium abscessus (Mabs) is a fast-growing, non-tuberculous mycobacterium responsible for serious lung infections in patients with cystic fibrosis. This bacterium evolves during the pulmonary infection between a smooth (S) and a rough morphotype (R). We have previously isolated the lsr2 gene as being differentially expressed during the transition between Mabs-S and Mabs-R. lsr2 encodes a pleiotropic transcription factor belonging to the superfamily of nucleoid-associated proteins (NAPs), which play an essential role in the hierarchical organization of bacterial chromosomes. The present study aims to unravel the molecular role of Lsr2 in regulating expression of gene involved in the adaptation and the pathobiology of Mabs using both RNA-Seq and ChIP-seq.
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections