Project description:Maternal high fat diet may disturb susceptibility in offspring. liver from maternal inulin early intervention has CpG sites that exhibit differential DNA methylationregulated compared to high fat diet.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:Milk contains microRNAs (miRNAs) that are protected by extracellular vesicles (EV). Beyond variations among individuals, the nutritional conditions of cattle play a role in shaping these milk miRNA profiles. This study explored milk-derived EV-miRNA variations induced by inulin supplementation and analyzed involved pathways. Fourteen lactating cows with sub-clinical mastitis were equally and randomly divided into an inulin and a control group. Cows in the inulin group received 300 g/d inulin, while the control group did not. After one week of adaptation and five weeks of treatment, milk-derived EV-miRNAs from cows were isolated. Differentially expressed (DE) miRNAs were identified via high-throughput sequencing. Functional enrichment analyses, including Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, were conducted to examine the target genes of DE miRNAs. Inulin supplementation did not significantly alter miRNA length, the number of known miRNAs, or the read number of small RNAs.
2024-05-31 | GSE256521 | GEO
Project description:Synbiotic intervention with Lactobacilli, Bifidobacteria, and inulin in healthy volunteers
Project description:ObjectiveContrary to the long-standing prerequisite of inducing selective (i.e. bifidogenic) effects, recent findings suggest that prebiotic interventions lead to ecosystem-wide microbiota shifts. Yet, a comprehensive characterization of this process is still lacking. Here, we apply 16S rDNA microbiota profiling and matching (GC-MS) metabolomics to assess the consequences of inulin fermentation both on the composition of the colon bacterial ecosystem and fecal metabolites profiles.DesignFecal samples collected during a double blind, randomized, cross-over intervention study (NCT02548247) set up to assess the effect of inulin consumption on stool frequency in healthy adults with mild constipation were analyzed. Fecal microbiota composition and metabolite profiles were linked to the study’s clinical outcome as well as to quality-of-life measurements recorded.ResultsWhile fecal metabolite profiles were not significantly altered by inulin consumption, our analyses did detect a modest effect on global microbiota composition. At the same time, specific inulin-induced changes in relative abundances of Anaerostipes, Bilophila, and Bifidobacterium were identified. The observed decrease in Bilophila abundances following inulin consumption was associated with both softer stools and a favorable change in constipation-specific quality of life measures.ConclusionsEcosystem-wide analysis of the effect of a dietary intervention with prebiotic inulin-type fructans on the colon microbiota revealed that this effect is specifically associated to three genera, one of which (Bilophila) representing a promising novel target for mechanistic research.
Project description:Dietary fiber such as inulin have been reported to promote cardiovascular and metabolic health. However, the mechanisms involved are not well understood. We studied effects of inulin on lipid metabolism in Ldlr deficient atherosclerosis mouse model using lipidomics and transcriptomics. Plasma and tissues were collected at 10 days and/or 12 weeks after feeding an atherogenic diet supplemented with inulin or cellulose (control).
Project description:MicroRNA (miRNA) profiles vary with the nutritional and pathological conditions of cattle. In this study, we aimed to investigate the effects of inulin supplement on miRNA profiles derived from serum extracellular vesicles (EVs). Our goal was to determine the differences in miRNA expressions and analyse the pathways in which they are involved. Based on the results of California mastitis test and milk somatic cell counts, ten lactating cows with subclinical mastitis were randomly divided into two groups: an inulin group and a control group (n = 5 in each group). The inulin group received a daily supplement of 300 g of inulin while the control group did not receive any supplementation. After a 5-week treatment period, serum-derived EV-miRNAs from each cow were isolated. High-throughput sequencing was conducted to identify differentially expressed miRNAs. GO and KEGG bioinformatics analysis was performed to examine the target genes of these differentially expressed miRNAs. The EV-RNA concentration and small RNA content were not affected by the inulin treatment. A total of 162 known miRNAs and 180 novel miRNAs were identified from 10 samples in the two groups. Among the known miRNAs, 23 miRNAs were found to be differentially expressed between the two groups, with 18 upregulated and five downregulated in the inulin group compared to the control group. Pathway analysis revealed the involvement of these differentially expressed miRNAs in the regulation of cell structure and function, lipid oxidation and metabolism, immunity and inflammation, as well as digestion and absorption of nutrients. Overall, our study provides a molecular-level explanation for the reported beneficial health effects of inulin supplementation in cows with subclinical mastitis.
Project description:Maternal inulin treatment may moderate the metabolism in offspring. Hypothalamic tissue from maternal inulin treatment has CpG sites that exhibit differential DNA methylationregulated compared to maternal obesity.
Project description:Roseburia inulinivorans is a recently identified motile representative of the Firmicutes that contributes to butyrate formation from a variety of dietary polysaccharide substrates in the human large intestine. Microarray analysis was used here to investigate substrate-driven gene expression changes in R. inulinivorans A2-194. A cluster of fructo-oligosaccharide (FOS)/inulin utilisation genes induced during growth on inulin included one encoding a b-fructofuranosidase protein that was prominent in the proteome of inulin-grown cells. This cluster also included a 6-phosphofructokinase and an ABC transport system, while a distinct inulin-induced 1-phosphofructokinase was linked to a fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS II transport enzyme). Real-time PCR analysis demonstrated that the b-fructofuranosidase and adjacent ABC transport protein showed greatest induction during growth on inulin, whereas the 1-phosphofructokinase enzyme and linked PTS II transport system were most strongly up-regulated during growth on fructose, indicating that these two clusters play distinct roles in the utilization of inulin. The R. inulinivorans B-fructofuranosidase was over-expressed in E. coli and shown to hydrolyse fructans ranging from inulin down to sucrose, with greatest activity on fructo-oligosacharides. Genes induced on starch included the major extra-cellular a-amylase and two distinct a-glucanotransferases together with a gene encoding a flagellin protein. The latter response may be concerned with improving bacterial access to insoluble starch particles. RNA was purified from mid-exponential phase (OD650 = 0.4) cultures of R. inulinivorans grown on basal YCFA supplemented with a single substrate of either starch or inulin using the RNeasy RNA purification kit (Qiagen), and the mRNA component enriched using the MICROBExpress system (Ambion). The purified RNA (1 ug) was labelled by reverse transcription (Amersham), employing random nonamer extension incorporating either dCTP-Cy3 or dCTP-Cy5 dyes. In order to ensure reproducibility, and to obtain statistically significant results, the dye labelling was swapped for a second hybridisation. RNA purified from a separate biological replicate was labelled and hybridised twice in the same way.