Project description:Morphine and its pharmacological derivatives are the most prescribed analgesics for moderate to severe pain management. However, chronic use of morphine reduces pathogen clearance and induces bacterial translocation across the gut barrier. The enteric microbiome has been shown to play a critical role in the preservation of the mucosal barrier function and metabolic homeostasis. Here, we show for the first time, using bacterial 16s rDNA sequencing, that chronic morphine treatment significantly alters the gut microbial composition and induces preferential expansion of the gram-positive pathogenic and reduction of bile-deconjugating bacterial strains. A significant reduction in both primary and secondary bile acid levels was seen in the gut, but not in the liver with morphine treatment. Morphine induced microbial dysbiosis and gut barrier disruption was rescued by transplanting placebo-treated microbiota into morphine-treated animals, indicating that microbiome modulation could be exploited as a therapeutic strategy for patients using morphine for pain management. In this study, we establish a link between the two phenomena, namely gut barrier compromise and dysregulated bile acid metabolism. We show for the first time that morphine fosters significant gut microbial dysbiosis and disrupts cholesterol/bile acid metabolism. Changes in the gut microbial composition is strongly correlated to disruption in host inflammatory homeostasis13,14 and in many diseases (e.g. cancer/HIV infection), persistent inflammation is known to aid and promote the progression of the primary morbidity. We show here that chronic morphine, gut microbial dysbiosis, disruption of cholesterol/bile acid metabolism and gut inflammation; have a linear correlation. This opens up the prospect of devising minimally invasive adjunct treatment strategies involving microbiome and bile acid modulation and thus bringing down morphine-mediated inflammation in the host.
Project description:Rates of esophageal adenocarcinoma are rising globally, with risk factors including a range of genetic and environmental factors, including obesity, tobacco smoking, TP53 mutations, and Barrett’s esophagus, a proinflammatory condition which often occurs prior to developing adenocarcinoma. Interestingly, these factors also modulate the gastrointestinal microbiome. To better understand the linkage between the microbiome, inflammation, and development of esophageal adenocarcinoma, we integrated 16S and RNA sequencing data. We found several microbial taxa enriched in tumor samples which were correlated with predicted immune cell infiltration from RNA-seq data, including a decrease in megakaryocyte-erythroid progenitor cells with a concomitant increase in platelets. These data suggest dysbiosis of the intratumoral microbiome promotes development and production of platelets, which reveal alterations in the immune microenvironment of esophageal adenocarcinoma and suggest novel therapeutic targets.
Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Dysbiosis, or changes within the microbiome, is a common feature of solid tumors, however whether this dysbiosis directly contributes to tumor development is largely unknown. We previously characterized the human lung cancer microbiome and identified the Gram-negative Acidovorax temperans as enriched in tumors and associated with smoking status and TP53 mutations. To determine if A. temperans exposure could contribute to the development of lung cancer, we investigated its effect in a genetically engineered mouse model of lung adenocarcinoma driven by mutant Kras and Tp53. In comparison to control mice and those instilled with a commensal species Lactobacillus gasseri, we found that repeated A. temperans exposure accelerates tumor development and burden through infiltration of proinflammatory cells in the lungs. Comparing immune cell infiltrates at two timepoints revealed increased proinflammatory cells immediately following A. temperans instillation while later the number of T cells, especially IL-17+ cells, was increased. These data indicate a clear role for microbiota-induced inflammation as a key mechanism in the development of lung cancer, demonstrating that dysbiosis contributes to tumor growth.
Project description:Periodontitis is a chronic inflammatory disease resulting from a dysbiosis of the dental biofilm and a dysregulated host response in susceptible individuals. It is characterized by periodontal attachment destruction, bone resorption, and eventual tooth loss. Salivary biomarkers have been sought to predict and prevent periodontitis. This comparative study analyzed the salivary proteome of 30 individuals with chronic periodontitis (CP) and 10 with periodontal health (PH), and correlated specific proteins with clinical parameters of disease by using mass spectrometry. Stimulated whole saliva was obtained and pooled for 5 healthy controls and 15 CP patients, precipitated with TCA, digested enzymatically with trypsin and analyzed by an LTQ Orbitrap Velos equipped with a nanoelectrospray ion source. A wide range of salivary proteins of various functions was significantly reduced in CP individuals, whereas salivary acidic proline-rich phosphoprotein, submaxillary gland androgen-regulated protein, histatin, fatty acid-binding protein, thioredoxin, and cystatin were predominant in diseased patients and correlated significantly with signs of periodontal attachment loss and inflammation. Specific salivary proteins were associated with PH and CP. These differences in salivary proteome profiles may contribute to the identification of disease indicators or signatures and the improvement of periodontal diagnosis.
Project description:Colorectal cancer (CRC) is strongly affected by diet, with red and processed meat increasing risk. To understand the role of microbiome in this phenomenon and to identify specific microbiome/metabolomics profiles associated with CRC risk, will be studied: 1) healthy volunteers fed for 3 months with: a high-CRC risk diet (meat-based MBD), a normalized CRC risk diet (MBD plus alpha-tocopherol, MBD-T), a low-CRC risk diet (pesco-vegetarian, PVD). At the beginning and at the end of the intervention, gut microbiome profiles (metagenomics and metabolomics), and CRC biomarkers (genotoxicity, cytotoxicity, peroxidation in faecal water; lipid/glycemic indexes, inflammatory cytokines, oxidative stress), 2) Colon carcinogenesis: the same diets will be fed (3 months) to carcinogen-induced rats or to Pirc rats, mutated in Apc, the key gene in CRC; faecal microbiome profiles, will be correlated to carcinogenesis measuring preneoplastic lesions, colon tumours, and faecal and blood CRC biomarkers as in humans; 3) To further elucidate the mechanisms underlying the effect of different microbiomes in determining CRC risk, faeces from rats fed the experimental diets will be transplanted into carcinogen-induced germ-free rats, measuring how microbiome changes correlate with metabolome and disease outcomes. The results will provide fundamental insight in the role of microbiome in determining the effect of the diet, in particular red/processed meat intake, on CRC risk
Project description:Dysbiosis, or changes within the microbiome, is a common feature of solid tumors, however whether this dysbiosis directly contributes to tumor development is largely unknown. We previously characterized the lung cancer microbiome and identified the Gram-negative Acidovorax temperans as enriched in tumors and associated with smoking status and TP53 mutations. To determine if A. temperans exposure could contribute to the development of lung cancer, we investigated its effect in an animal model of lung adenocarcinoma driven by mutant Kras and Tp53 alleles. This revealed A. temperans exposure accelerates tumor development and burden through infiltration of proinflammatory cells in the lungs. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1β signaling. Neutrophil to monocyte and macrophage signaling promoted maturation of the latter cell types which upregulated MHC II to activate CD4+ T cells. Activated T cells were then polarized to an IL-17A+ phenotype detectable in CD4+ and γδ populations. Furthermore, T17 cells shared a common gene expression profile predictive of poor survival in human LUAD cases. These data indicate a clear role for microbiota-induced inflammation as a key mechanism in the development of lung cancer, demonstrating that dysbiosis contributes to tumor growth.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:Compositional changes in the microbiota (dysbiosis) may be a basis for Irritable Bowel Syndrome (IBS) but biomarkers are currently unavailable to direct microbiota-directed therapy. We therefore examined whether changes in fecal β-defensin could be a marker of dysbiosis in a murine model. Experimental dysbiosis was induced using four interventions relevant to IBS: a mix of antimicrobials, westernized diets (high-fat/high-sugar and, high salt diets), or mild restraint stress. Fecal mouse β-defensin-3 and 16S rRNA-based microbiome profiles were assessed at baseline, during and following these interventions. Each intervention, except for mild restraint stress, altered compositional and diversity profiles of the microbiota. Exposure to antimicrobials or a high-fat/high-sugar diet, but not mild restraint stress, resulted in decreased fecal β-defensin-3 compared to baseline. In contrast, exposure to the high salt diet increased β-defensin-3 compared to baseline but this was not accompanied by discernible inflammatory changes in the host.