Project description:Colorectal cancer (CRC) is the third most diagnosed type of cancer and the second leading cause of cancer death worldwide. Despite the increasing knowledge of CRC molecular biology and the development of new targeted therapies, its high heterogeneity hampers the efficacy of current treatments. Thus, there is a pressing need to identify new effective therapeutic targets and improve immune therapies for these patients. In this regard, S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme that has been suggested to play a tumour suppressor role, although the mechanisms responsible are still largely unclear. Therefore, the main objective of this project was to understand the role of GSNOR in CRC tumorigenesis and its therapeutic implications. Firstly, we classified CRC tumours as GSNOR-high or low according to their GSNOR expression as assessed by immunohistochemistry (IHC). Accordingly, we found that GSNOR deficiency was associated with worse prognosis factors such as a larger tumour size at diagnosis, higher TNM stage, higher grade of tumour budding (TB), the CMS4 subtype, lower expression of the intestinal differentiation markers CDX2 and AE1/AE3 cytokeratin and a worse progression free survival (PFS) and overall survival (OS). We next investigated the differences in gene expression between CRC GSNOR-high and low tumours, uncovering significant alterations in metabolism and immune system pathways. Hence, GSNOR-deficient tumours were characterized by immune suppressive features and a dysregulation of their metabolism, favouring other metabolic pathways than OXPHOS.
Project description:Homeostatic immunoregulatory mechanisms that prevent adverse effects of immune overaction can serve as barriers to successful anti-cancer immunity, representing attractive targets to improve cancer immunotherapy. Here, we demonstrated the role of the non-receptor tyrosine kinase Fes, abundantly expressed in immune cells, as an innate intracellular immune checkpoint. Host Fes-deficiency delayed tumor onset in a gene dose-dependent manner and improved tumor control, survival, doxorubicin efficacy, and anti-PD-1 therapy sensitization in murine triple-negative breast cancer and melanoma models. These effects were associated with a shift to an anti-tumorigenic immune microenvironment. Fes-deficient macrophages displayed increased Toll-like receptor signaling, proinflammatory cytokine production, antigen presentation to and activation of T cells, leading to increased cancer cell killing in vitro and tumor control in vivo. This study highlights Fes as an innate immune checkpoint with potential as a therapeutic target and a predictive biomarker to guide immune checkpoint inhibitor treatment.
Project description:AT-rich interactive domain-containing protein 1A (ARID1A), a core constituent of the switch/sucrose nonfermentable (SWI/SNF) complex, is mutated in approximately 10% of colorectal cancers. Whereas ARID1A deficiency corresponds to heightened immune activity in colorectal cancer, immune checkpoint inhibitors (ICI) have shown limited efficacy in these tumors. The discovery of targetable vulnerabilities associated with ARID1A deficiency in colorectal cancer could expand treatment options for patients. In this study, we demonstrated that arachidonic acid (AA) metabolism inhibitors synergize with ICIs in ARID1A-deficient colorectal cancer by enhancing the activity of CD8+ T cells and inhibiting vasculogenic mimicry. Epigenetic analysis using ATAC-seq and ChIP-qPCR revealed that the lack of ARID1A results in reduced levels of PTGS1 and PTGS2, the key enzymes that control the AA pathway. Low PTGS1 and PTGS2 expression generated a reliance on the remaining functionality of the AA pathway in ARID1A-deficient cells. The AA pathway inhibitor aspirin selectively inhibited the growth of ARID1A-deficient colorectal cancer, and aspirin sensitized tumors lacking ARID1A to immunotherapy. Together, these findings suggest that blocking AA metabolism can enhance immune responses against tumors by activating CD8+ T cells and inhibiting vasculogenic mimicry, which synergizes with ICIs to improve treatment of ARID1A-deficient colorectal cancer. Significance: The arachidonic acid pathway is a metabolic vulnerability in ARID1A-deficient colorectal cancer that can be targeted with aspirin to suppress tumor growth and enhance sensitivity to immunotherapy, providing a promising therapeutic strategy.
Project description:Cancers evade the immune system in order to grow or metastasise through the process of cancer immunoediting. While checkpoint inhibitor therapy has been effective for reactivating tumour immunity in some cancers, many solid cancers, including breast cancer, remain largely non-responsive. Understanding the way non-responsive cancers evolve to evade immunity, what resistance pathways are activated and whether this occurs at the clonal level will improve immunotherapeutic design. We tracked cancer cell clones during the immunoediting process and determined clonal transcriptional profiles that allow immune evasion in murine mammary tumour growth in response to immunotherapy with anti-PD1 and anti-CTLA4. Clonal diversity was significantly restricted by immunotherapy treatment at both the primary and metastatic sites. These findings demonstrate that immunoediting selects for pre-existing breast cancer cell populations, that immunoediting is not a static process and is ongoing during metastasis and immunotherapy treatment. Isolation of immunotherapy resistant clones revealed unique and overlapping transcriptional signatures. The overlapping gene signature was predictive of poor survival in basal-like breast cancer patient cohorts. Some of these overlapping genes have existing small molecules which can be used to potentially improve immunotherapy response.