Project description:Environmental variation along the geographical space can shape populations by natural selection. In the context of global warming and changing precipitation regimes, it is crucial to understand the role of environmental heterogeneity in tropical trees adaptation, given their disproportional contribution to water and carbon biogeochemical cycles. Here, we investigated how heterogeneity in freshwater availability along tropical wetlands has influenced molecular variations of the black mangrove (Avicennia germinans). A total of 57 trees were sampled at seven sites differing markedly in precipitation regime and riverine freshwater inputs. Using 2,297 genome‐wide single nucleotide polymorphic markers, we found signatures of natural selection by the association between variations in allele frequencies and environmental variables, including the precipitation of the warmest quarter and the annual precipitation. Additionally, we found candidate loci for selection based on statistical deviations from neutral expectations of interpopulation differentiation. Most candidate loci within transcribed sequences were functionally associated with central aspects of drought tolerance or plant response to drought. Moreover, our results suggest the occurrence of the rapid evolution of a population, probably in response to sudden and persistent limitations in plant access to soil water, following a road construction in 1974. Observations supporting rapid evolution included the reduction in tree size and changes in allele frequencies and in transcript expression associated with increased drought tolerance through the accumulation of osmoprotectants and antioxidants, biosynthesis of cuticles, protection against protein degradation, stomatal closure, photorespiration and photosynthesis. We describe a major role of spatial heterogeneity in freshwater availability in the specialization of this typically tropical tree.
Project description:Although species-area relationship (SAR) is among the most extensively studied patterns in ecology, studies on aquatic and/or microbial systems are seriously underrepresented in the literature. We tested the algal SAR in lakes, pools and ponds of various sizes (10-2-108 m2) and similar hydromorphological and trophic characteristics using species-specific data and functional groups. Besides the expectation that species richness increases monotonously with area, we found a right-skewed hump-shaped relationship between the area and phytoplankton species richness. Functional richness however did not show such distortion. Differences between the area dependence of species and functional richness indicate that functional redundancy is responsible for the unusual hump-backed SAR. We demonstrated that the Small Island Effect, which is a characteristic for macroscopic SARs can also be observed for the phytoplankton. Our results imply a so-called large lake effect, which means that in case of large lakes, wind-induced mixing acts strongly against the habitat diversity and development of phytoplankton patchiness and finally results in lower phytoplankton species richness in the pelagial. High functional redundancy of the groups that prefer small-scale heterogeneity of the habitats is responsible for the unusual humpback relationship. The results lead us to conclude that although the mechanisms that regulate the richness of both microbial communities and communities of macroscopic organisms are similar, their importance can be different in micro- and macroscales.
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment. This is the RNA-seq experiment, DNA methylation data (bisulfite-seq) is provided under accession number GSE82310.
Project description:Three-spined stickleback (Gasterosteus aculeatus) represents a convenient model to study microevolution - adaptation to freshwater environment. While genetic adaptations to freshwater are well-studied, epigenetic adaptations attracted little attention. In this work, we investigated the role of DNA methylation in the adaptation of marine stickleback population to freshwater conditions. DNA methylation profiling was performed in marine and freshwater populations of sticklebacks, as well as in marine sticklebacks placed into freshwater environment and freshwater sticklebacks placed into seawater. For the first time, we demonstrated that genes encoding ion channels kcnd3, cacna1fb, gja3 are differentially methylated between marine and freshwater populations. We also showed that after placing marine stickleback into fresh water, its DNA methylation profile partially converges to the one of a freshwater stickleback. This suggests that immediate epigenetic response to freshwater conditions can be maintained in freshwater population. Interestingly, we observed enhanced epigenetic plasticity in freshwater sticklebacks that may serve as a compensatory regulatory mechanism for the lack of genetic variation in the freshwater population. Some of the regions that were reported previously to be under selection in freshwater populations also show differential methylation. Thus, epigenetic changes might represent a parallel mechanism of adaptation along with genetic selection in freshwater environment.
Project description:BackgroundFunctional redundancy has been debated largely in ecology and conservation, yet we lack detailed empirical studies on the roles of functionally similar species in ecosystem function. Large bodied frugivores may disperse similar plant species and have strong impact on plant recruitment in tropical forests. The two largest frugivores in the neotropics, tapirs (Tapirus terrestris) and muriquis (Brachyteles arachnoides) are potential candidates for functional redundancy on seed dispersal effectiveness. Here we provide a comparison of the quantitative, qualitative and spatial effects on seed dispersal by these megafrugivores in a continuous Brazilian Atlantic forest.Methodology/principal findingsWe found a low overlap of plant species dispersed by both muriquis and tapirs. A group of 35 muriquis occupied an area of 850 ha and dispersed 5 times more plant species, and 13 times more seeds than 22 tapirs living in the same area. Muriquis dispersed 2.4 times more seeds in any random position than tapirs. This can be explained mainly because seed deposition by muriquis leaves less empty space than tapirs. However, tapirs are able to disperse larger seeds than muriquis and move them into sites not reached by primates, such as large forest gaps, open areas and fragments nearby. Based on published information we found 302 plant species that are dispersed by at least one of these megafrugivores in the Brazilian Atlantic forest.Conclusions/significanceOur study showed that both megafrugivores play complementary rather than redundant roles as seed dispersers. Although tapirs disperse fewer seeds and species than muriquis, they disperse larger-seeded species and in places not used by primates. The selective extinction of these megafrugivores will change the spatial seed rain they generate and may have negative effects on the recruitment of several plant species, particularly those with large seeds that have muriquis and tapirs as the last living seed dispersers.
Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents.
Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents. Four to five fish from each population were used as biological replicates for each of the seven tissues. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents. All fish were of similar age and were raised in the same aquarium (salinity: 3.5 ppt), with a plastic divider separating the marine and freshwater groups. One male and four females were sampled from each population. Microarray experiments were performed in a 2-color format on custom Agilent arrays: experimental RNA samples were labeled with Cy5, and the common reference RNA sample was labeled with Cy3. The reference RNA was total RNA isolated from a large number of 7-day-post-hatch embryos from the freshwater population of Bear Paw Lake, Alaska (BEPA). One technical replicate was used for each array, and one of the hypothalamus samples (Hyp_FTC#3) was excluded from further analysis due to poor quality indicators. FTC#1 liver and LITC#2 pectoral muscle samples did not yield RNA of sufficient quality for the microarray experiment, and were also excluded from hybridization.
Project description:Bacterial responses to phosphorus limitation, commonly inorganic phosphate (P(i)), are important survival mechanisms in a variety of environments. The two-component sensor kinase PhoR and its cognate response regulator PhoB are central to the P(i) limitation response of many bacteria and control the large Pho regulon. Limitation for P(i) significantly increased attachment and biofilm formation by the plant pathogen Agrobacterium tumefaciens, and this was driven by PhoB. Surprisingly, it was also found that both phoR and phoB were essential in A. tumefaciens. Expression of a plasmid-borne copy of the low affinity P(i) transporter (pit) from Sinorhizobium meliloti in A. tumefaciens abolished the phoB and phoR essentiality in A. tumefaciens and allowed direct demonstration of the requirement for this regulatory system in the biofilm response. Increased attachment under P(i) limitation required a unipolar polysaccharide (UPP) adhesin. Mutation of a polyisoprenylphosphate hexose-1-phosphate transferase (PHPT) called uppE abolished UPP production and prevented surface attachment under P(i)-replete conditions, but this was rescued under P(i) limitation, and this rescue required phoB. In low P(i) conditions, either uppE or a paralogous gene Atu0102 is functionally redundant, but only uppE functions in UPP synthesis and attachment when P(i) is replete. This conditional functional redundancy illustrates the influence of phosphorus availability on A. tumefaciens surface colonization.