Project description:Persister cells are a sub-population of all bacterial cultures which exhibit a non-inheritable, multi-drug tolerance when subjected to lethal antibiotic challenge. These persisters arise as a result of metabolic dormancy, and can resume growth subsequent to antibiotic challenge, leading to recalcitrance of bacterial infections. Overproduction of DosP, an oxygen sensing protein with phosphodiesterase activity, increases bacterial persistence. Here we performed a microarray to determine the expression profile induced by DosP as a means to elucidate mechanisms of persister cell formation.
Project description:Persister cells are a sub-population of all bacterial cultures which exhibit a non-inheritable, multi-drug tolerance when subjected to lethal antibiotic challenge. These persisters arise as a result of metabolic dormancy, and can resume growth subsequent to antibiotic challenge, leading to recalcitrance of bacterial infections. Overproduction of DosP, an oxygen sensing protein with phosphodiesterase activity, increases bacterial persistence. Here we performed a microarray to determine the expression profile induced by DosP as a means to elucidate mechanisms of persister cell formation. dosP was overexpressed in Escherichia coli K-12 BW25113 and compared to the empty vector.
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10M-BM-5g/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended. 12 samples
Project description:Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.
Project description:The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short chain fatty acids (SCFA), and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics; enrofloxacin, cephalexin, paromomycin, and clindamycin; in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble-CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities, associated with specific alterations in mucosal and systemic immunity.
Project description:High-resolution tandem MS spectra of colipterin metabolites produced by Escherichia coli. These metabolites are stimulated in the presence of sub-lethal levels of sulfamethoxazole antibiotic.
Project description:Freshwater environments such as rivers receive effluent discharges from wastewater treatment plants, representing a potential hotspot for antibiotic resistance genes (ARGs). These effluents also contain low levels of different antimicrobials including biocides and antibiotics such as sulfonamides that can be frequently detected in rivers. The impact of such exposure on ARG prevalence and microbial diversity of riverine environment is unknown, so the aim of this study was to investigate the release of a sub-lethal concentration (<4 g L-1) of the sulfonamide compound sulfamethoxazole (SMX) on the river bacterial microbiome using a microflume system. This system was a semi-natural in-vitro microflume using river water (30 L) and sediment, with circulation to mimic river flow. A combination of ‘omics’ approaches were conducted to study the impact of SMX exposure on the microbiomes within the microflumes. Metaproteomics did not show differences in ARGs expression with SMX exposure in water.
Project description:The Lobaria pulmonaria holobiont consists of algal, fungal, cyanobacterial, and integrated diverse bacterial components and thrives in undisturbed, humid forests. We set out to investigate the role of the microbiome of L. pulmonaria in the adaptation of this ecologically sensitive lichen species to diverse climatic conditions. Our central hypothesis posited that microbiome composition and functionality aligns with continental-scale climatic parameters related to temperature and precipitation. In addition, we tested whether short-term weather dynamics, sampling season, and the genotypes of the fungal and algal partners influenced the variation in the lichen microbiome. Insights into compositional and functional changes within the microbiome were obtained using metaproteomics. Comparative examinations between Sub-Atlantic Lowland (SAL) and Alpine (ALP) regions unveiled the distinct impact of climate on microbiome functions.
Project description:In this project we investigated the effect of sub lethal doses of the novel antibiotic 3-bromo-PP on the proteome of S. aureus Mu50.