Project description:Biogas production through the anaerobic digestion (AD) of organic waste plays a crucial role in promoting sustainability and closing the carbon cycle. Over the past decade, this has driven global research on biogas-producing microbiomes, leading to significant advances in our understanding of microbial diversity and metabolic pathways within AD plants. However, substantial knowledge gaps persist, particularly in understanding the specific microbial communities involved in biogas production in countries such as South Korea. The present dataset addresses one of these gaps by providing comprehensive information on the metagenomes of five full-scale mesophilic biogas reactors in South Korea. From 110 GB of raw DNA sequences, 401 metagenome-assembled genomes (MAGs) were created, which include 42,301 annotated genes. Of these, 187 MAGs (46.7%) were classified as high-quality based on Minimum Information about Metagenome-Assembled Genome (MIMAG) standards. The data presented here contribute to a broader understanding of biogas-specific microbial communities and offers a significant resource for future studies and advancements in sustainable biogas production.
Project description:The functional diversity of soil microbial communities was explored for a poplar plantation, which was treated solely with biogas slurry, or combined with biochar at different fertilization intensities over several years.
Project description:Small-subunit rRNA sequences were obtained for two saturated fatty acid-beta-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-beta-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-beta-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas.
Project description:Members of the genera Proteiniphilum and Petrimonas were speculated to represent indicators reflecting process instability within anaerobic digestion (AD) microbiomes. Therefore, Petrimonas mucosa ING2-E5AT was isolated from a biogas reactor sample and sequenced on the PacBio RSII and Illumina MiSeq sequencers. Phylogenetic classification positioned the strain ING2-E5AT in close proximity to Fermentimonas and Proteiniphilum species (family Dysgonomonadaceae). ING2-E5AT encodes a number of genes for glycosyl-hydrolyses (GH) which are organized in Polysaccharide Utilization Loci (PUL) comprising tandem susCD-like genes for a TonB-dependent outer-membrane transporter and a cell surface glycan-binding protein. Different GHs encoded in PUL are involved in pectin degradation, reflecting a pronounced specialization of the ING2-E5AT PUL systems regarding the decomposition of this polysaccharide. Genes encoding enzymes participating in amino acids fermentation were also identified. Fragment recruitments with the ING2-E5AT genome as a template and publicly available metagenomes of AD microbiomes revealed that Petrimonas species are present in 146 out of 257 datasets supporting their importance in AD microbiomes. Metatranscriptome analyses of AD microbiomes uncovered active sugar and amino acid fermentation pathways for Petrimonas species. Likewise, screening of metaproteome datasets demonstrated expression of the Petrimonas PUL-specific component SusC providing further evidence that PUL play a central role for the lifestyle of Petrimonas species.
Project description:As climate change intensifies, endemic plants native to South Korea, especially those in specialized ecological niches, confront heightened risks of distribution shifts and habitat degradation. To provide a comprehensive understanding of these impacts, this study evaluates the climate-induced distribution dynamics and niche adaptation of these endemic species across the entire Korean Peninsula. Utilizing species distribution models (SDMs) for 179 plant species and incorporating environmental variables under projected future climate scenarios, our analysis identified unique distribution and niche adaptation patterns. Findings demonstrate that specialized endemic species are likely to migrate to higher altitudes and latitudes, highlighting their distinct vulnerability due to limited ecological niches. Our comparative approach underscores the necessity for refined conservation strategies that address the specific requirements of these endemic species, as opposed to those with wider distributions. This research offers valuable insights into biodiversity conservation amid climate change, proposing targeted actions such as the establishment of protected areas, habitat restoration, and the implementation of assisted migration strategies to safeguard these vital endemic plant species throughout the Korean Peninsula.
Project description:BackgroundMethane yield and biogas productivity of biogas plants (BGPs) depend on microbial community structure and function, substrate supply, and general biogas process parameters. So far, however, relatively little is known about correlations between microbial community function and process parameters. To close this knowledge gap, microbial communities of 40 samples from 35 different industrial biogas plants were evaluated by a metaproteomics approach in this study.ResultsLiquid chromatography coupled to tandem mass spectrometry (Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer) of all 40 samples as triplicate enabled the identification of 3138 different metaproteins belonging to 162 biological processes and 75 different taxonomic orders. The respective database searches were performed against UniProtKB/Swiss-Prot and seven metagenome databases. Subsequent clustering and principal component analysis of these data allowed for the identification of four main clusters associated with mesophile and thermophile process conditions, the use of upflow anaerobic sludge blanket reactors and BGP feeding with sewage sludge. Observations confirm a previous phylogenetic study of the same BGP samples that was based on 16S rRNA gene sequencing by De Vrieze et al. (Water Res 75:312-323, 2015). In particular, we identified similar microbial key players of biogas processes, namely Bacillales, Enterobacteriales, Bacteriodales, Clostridiales, Rhizobiales and Thermoanaerobacteriales as well as Methanobacteriales, Methanosarcinales and Methanococcales. For the elucidation of the main biomass degradation pathways, the most abundant 1 % of metaproteins was assigned to the KEGG map 1200 representing the central carbon metabolism. Additionally, the effect of the process parameters (i) temperature, (ii) organic loading rate (OLR), (iii) total ammonia nitrogen (TAN), and (iv) sludge retention time (SRT) on these pathways was investigated. For example, high TAN correlated with hydrogenotrophic methanogens and bacterial one-carbon metabolism, indicating syntrophic acetate oxidation.ConclusionsThis is the first large-scale metaproteome study of BGPs. Proteotyping of BGPs reveals general correlations between the microbial community structure and its function with process parameters. The monitoring of changes on the level of microbial key functions or even of the microbial community represents a well-directed tool for the identification of process problems and disturbances.Graphical abstractCorrelation between the different orders and process parameter, as well as principle component analysis of all investigated biogas plants based on the identified metaproteins.