Project description:Classic Hodgkin lymphoma (CHL) harbors a small number of Hodgkin-Reed-Sternberg (HRS) cells scattering among numerous lymphocytes. HRS cells are surrounded by distinct CD4+ T cells in a rosette-like manner. These CD4+ T cell rosettes play an important role in tumor microenvironment (TME) of CHL. To elucidate the interaction between HRS cells and CD4+ T cell rosettes, we performed digital spatial profiling (DSP) and compared gene expression profile between CD4+ T cell rosettes and other CD4+ cells separated from HRS cells. programed cell death-1 (PD-1) and tumor necrosis factor receptor superfamily member (TNFRSF) 4 were significantly highly expressed in CD4+ T cell rosettes than others. Immunohistochemistry confirmed PD-1 and TNFRSF4-expressing CD4+ T cell rosettes. This study introduced the new pathological approach to TME and provided deeper insight to CD4+ T cells in CHL.
Project description:Classic Hodgkin lymphoma (CHL) harbors a small number of Hodgkin-Reed-Sternberg (HRS) cells scattered among numerous lymphocytes. HRS cells are surrounded by distinct CD4+ T cells in a rosette-like manner. These CD4+ T cell rosettes play an important role in the tumor microenvironment (TME) of CHL. To elucidate the interaction between HRS cells and CD4+ T cell rosettes, we completed digital spatial profiling to compare the gene expression profiles of CD4+ T cell rosettes and other CD4+ T cells separated from the HRS cells. Tumor necrosis factor receptor superfamily member (TNFRSF) 4 or OX40 showed significantly higher expression in CD4+ T cell rosettes when compared with other CD4+ T cells. Programed cell death-1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) tended to be highly expressed in CD4+ T cell rosettes compared to other CD4+ T cells. Immunohistochemistry revealed variable expression of these immune checkpoint molecules in the CD4+ T cell rosettes. This study introduced a new pathological approach to the TME and provided deeper insight into CD4+ T cells in CHL.
Project description:Circulating tumor DNA (ctDNA) as a biomarker of disease activity in classic Hodgkin lymphoma (cHL) patients are still not well-defined. By profiling primary tumors and ctDNA, we identified common variants between primary tumors and longitudinal plasma samples in most of the cases, confirming high PBatial and temporal heterogeneity. Though ctDNA analyses mirrored HRS cell genetics overall, the prevalence of variants shows that none of them can be used as a single biomarker. Conversely, the estimation of hGE/mL, based in total ctDNA quantification, reflects disease activity and is almost perfectly correlated with standard parameters such as PET/CT that are associated with refractoriness.
Project description:The cellular microenvironment in classical Hodgkin lymphoma (cHL) is dominated by a mixed infiltrate of inflammatory cells with typically only about 1% Hodgkin and Reed/Sternberg (HRS) tumor cells. T cells are usually the largest population of cells in the cHL microenvironment, encompassing T helper (Th) cells, regulatory T (Treg) cells and cytotoxic T cells. Th and Treg cells presumably provide essential survival signals for HRS cells. Treg cells are also involved in rescuing HRS cells from anti-tumor immune responses. An understanding of the immune evasion strategies of HRS cells is not only highly relevant for a characterization of the pathophysiology of cHL, but also clinically, given the current treatment approaches targeting checkpoint inhibitors. Here, we characterized the cHL-specific CD4+ T cell infiltrate regarding its role in immune evasion. Global gene expression analysis of CD4+ Th and Treg cells isolated from cHL lymph nodes and reactive tonsils revealed that Treg cell signatures were enriched in CD4+ Th cells of cHL. Hence, HRS cells may induce a Treg differentiation in Th cells, which was supported by in vitro studies with Th cells and cHL cell lines. Furthermore, we found indication for immune-suppressive purinergic signaling and a role of the inhibitory receptor-ligand pairs BTLA-HVEM and CD200R-CD200 in promoting immune evasion. Taken together, this study reveals that the immune evasion strategies in cHL are even more complex and multifaceted than previously recognized.
Project description:Classic Hodgkin lymphoma (CHL) characteristically shows few malignant cells in a microenvironment comprised of mixed inflammatory cells. Although CHL is associated with a high cure rate, recent studies have associated poor prognosis with absolute monocyte count in peripheral blood and increased monocyte/macrophages in involved lymph nodes. Thus, the role of monocytic infiltration and macrophage differentiation in the tumor microenvironment of CHL may be more relevant than absolute macrophage numbers to defining prognosis in CHL patients and potentially have therapeutic implications. Most studies identify tumor-associated macrophages (TAMs) using markers (e.g., CD68) expressed by macrophages and other mononuclear phagocytes, such as monocytes. In contrast, Class A Scavenger Receptor (SR-A/CD204) is expressed by tissue macrophages but not monocytic precursors. In this study, we examined SR-A expression in CHL (n = 43), and compared its expression with that of other macrophage markers. We confirmed a high prevalence of mononuclear cells that stained with CD68, CD163, and CD14 in CHL lymph nodes. However, SR-A protein expression determined by immunohistochemistry was limited to macrophages localized in sclerotic bands characteristic of nodular sclerosis CHL. In contrast, SR-A protein was readily detectable in lymph nodes with metastatic tumor, extra-nodal CHL, T cell/histiocyte-rich large B cell lymphoma, and resident macrophages in non-malignant tissues, including spleen, lymph node, liver and lung. The results of SR-A protein expression paralleled the expression of SR-A mRNA determined by quantitative RT-PCR. These data provide evidence that tumor-infiltrating monocyte/macrophages in CHL have a unique phenotype that likely depends on the microenvironment of nodal CHL.
Project description:The pathogenesis of classical Hodgkin lymphoma (cHL), the most common lymphoma in the young, is still enigmatic, largely because its Hodgkin and Reed-Sternberg (HRS) tumor cells are rare in the involved lymph node and therefore difficult to analyze. Here, by overcoming this technical challenge and performing for the first time a genome-wide transcriptional analysis of microdissected HRS cells in comparison to other B-cell lymphomas, cHL lines and normal B-cell subsets, we show that they differ extensively from the usually studied cHL cell lines, that the lost B-cell identity of cHLs is not linked to the acquisition of a plasma cell-like gene expression program, and that Epstein-Barr virus infection of HRS cells has a minor transcriptional influence on the established cHL clone. Moreover, although cHL appears a distinct lymphoma entity overall, HRS cells of its histological subtypes diverged in their similarity to other related lymphomas. Unexpectedly, we identified two molecular subgroups of cHL associated to differential strengths of the transcription factor activity of the NOTCH1, MYC and IRF4 proto-oncogenes. Finally, HRS cells display deregulated expression of several genes potentially highly relevant to lymphoma pathogenesis, including silencing of the apoptosis-inducer BIK and of INPP5D, an inhibitor of the PI3K-driven oncogenic pathway.
Project description:The pathogenesis of classical Hodgkin lymphoma (cHL), the most common lymphoma in the young, is still enigmatic, largely because its Hodgkin and Reed-Sternberg (HRS) tumor cells are rare in the involved lymph node and therefore difficult to analyze. Here, by overcoming this technical challenge and performing for the first time a genome-wide transcriptional analysis of microdissected HRS cells in comparison to other B-cell lymphomas, cHL lines and normal B-cell subsets, we show that they differ extensively from the usually studied cHL cell lines, that the lost B-cell identity of cHLs is not linked to the acquisition of a plasma cell-like gene expression program, and that Epstein-Barr virus infection of HRS cells has a minor transcriptional influence on the established cHL clone. Moreover, although cHL appears a distinct lymphoma entity overall, HRS cells of its histological subtypes diverged in their similarity to other related lymphomas. Unexpectedly, we identified two molecular subgroups of cHL associated to differential strengths of the transcription factor activity of the NOTCH1, MYC and IRF4 proto-oncogenes. Finally, HRS cells display deregulated expression of several genes potentially highly relevant to lymphoma pathogenesis, including silencing of the apoptosis-inducer BIK and of INPP5D, an inhibitor of the PI3K-driven oncogenic pathway. The present study complements the GSE12453 and GSE14879 records by adding the following 10 samples: 5 primary tumor samples and 5 cell line samples. The 5 primary tumor samples represent 1000-2000 neoplastic cells microdissected from frozen biopsies of 5 cases of primary mediastinal B-cell lymphoma (PMBL). The 5 cell line samples represent 500-1000 living neoplastic cells isolated by fluorescence-activated cell sorting from growing cultures of the classical Hodgkin lymphoma (cHL) cell lines L1236, L428, KMH2 and HDLM2 and the lymphocyte-predominant Hodgkin lymphoma (lpHL) cell line DEV.
Project description:Although Hodgkin and Reed-Sternberg (HRS) cells are B lymphoid cells, they are unlike any normal cells of that lineage. Moreover, the limited proliferative potential of HRS cells belies the clinical aggressiveness of Hodgkin lymphoma (HL). More than 20 years ago, the L428 HL cell line was reported to contain a small population of phenotypic B cells that appeared responsible for the continued generation of HRS cells. This observation, however, has never been corroborated, and such clonotypic B cells have never been documented in HL patients. We found that both the L428 and KM-H2 HL cell lines contained rare B-cell subpopulations responsible for the generation and maintenance of the predominant HRS cell population. The B cells within the HL cell lines expressed immunoglobulin light chain, the memory B-cell antigen CD27, and the stem cell marker aldehyde dehydrogenase (ALDH). Clonal CD27(+)ALDH(high) B cells, sharing immunoglobulin gene rearrangements with lymph node HRS cells, were also detected in the blood of most newly diagnosed HL patients regardless of stage. Although the clinical significance of circulating clonotypic B cells in HL remains unclear, these data suggest they may be the initiating cells for HL.