Project description:Accurate annotation of transcript isoforms is crucial to understand gene functions, but automated methods for reconstructing full-length transcripts from RNA sequencing (RNA-seq) data remain imprecise. We developed Bookend, a software package for transcript assembly that incorporates data from different RNA-seq techniques, with a focus on identifying and utilizing RNA 5′ and 3′ ends. Through end-guided assembly with Bookend we demonstrate that correct modeling of transcript start and end sites is essential for precise transcript assembly. Furthermore, we discovered that utilization of end-labeled reads present in full-length single-cell RNA-seq (scRNA-seq) datasets dramatically improves the precision of transcript assembly in single cells. Finally, we show that hybrid assembly across short-read, long-read, and end-capture RNA-seq datasets from Arabidopsis, as well as meta-assembly of RNA-seq from single mouse embryonic stem cells (mESCs) can produce end-to-end transcript annotations of comparable quality to reference annotations in these model organisms.
Project description:Porcine 60K BeadChip genotyping arrays (Illumina) are increasingly being applied in pig genomics to validate SNPs identified by re-sequencing or assembly-versus-assembly method. Here we report that more than 98% SNPs identified from the porcine 60K BeadChip genotyping array (Illumina) were consistent with the SNPs identified from the assembly-based method. This result demonstrates that whole-genome de novo assembly is a reliable approach to deriving accurate maps of SNPs.
Project description:Chromatin replication requires tight coordination of nucleosome assembly machinery with DNA replication machinery. While significant progress has been made in characterizing histone chaperones in this process, the mechanism of whereby nucleosome assembly couples with DNA replication remains largely unknown. Here we show that replication protein A (RPA), a single-stranded DNA (ssDNA) binding protein that is essential for DNA replication provides a binding platform for H3-H4 deposition by histone chaperons and is required for nucleosome formation on nascent chromatin. RPA binds free histone H3-H4 but not nucleosomal histones, and a RPA coated ssDNA stimulates assembly of H3-H4 onto double strand DNA in vitro. RPA mutant with reduced H3-H4 binding exhibits synthetic genetic interaction with mutations at key factors involved in replication-coupled (RC) nucleosome assembly, and are defective in assembly of replicating DNA into nucleosomes in cells. These results reveal a novel function for RPA in nucleosome assembly and a mechanism whereby nucleosome assembly is coordinated with DNA replication.
Project description:Stress granule and inflammasome assembly determine contrasting fates of stressed cells. FAM69C is a brain-enriched kinase associated with neurodegenerative diseases, but its biological functions are still largely unknown. Here we show that FAM69C plays an important role in the regulation of stress responses through promoting stress granule assembly and suppressing inflammasome activation. In response to ATP, a common inflammasome activator, mouse primary microglia, and BV-2 cells form stress granules. FAM69C deficiency hastens inflammasome activation in mouse microglia, which is accompanied by inhibited stress granule assembly. FAM69C promotes the assembly of stress granules and halts protein translation under stress. Aged Fam69c knockout mice show increased neuroinflammation and ASC specks formation. We further find that FAM69C physically phosphorylates eIF2α and promotes stress granule assembly. Our data reveal that FAM69C promotes stress granule assembly under stress and suppresses inflammasome formation in microglia, suggesting that FAM69C may be a potential therapeutic target for neurodegenerative diseases.