Project description:Embryogenic cultures derived from a zygotic embryo of the avocado cv. Anaheim, were selected for resistance to the culture filtrate (CF) of Rosellinia necatrix, the causal agent of avocado white root rot. Cultures were obtained through recurrent selections in progressively increasing concentrations of fungal CF (from 20% up to 80%).
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Functional gene abundance was determined using GeoChip.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:White root rot disease caused by Rosellinia necatrix is one of the most important pathogens affecting avocado productivity in temperate, tropical and subtropical climates. Control of this disease is complex and nowadays, lies in the use of physical and chemical methods, although none have proven to be fully effective. Detailed understanding of the molecular mechanisms underlying white root rot disease has the potential of aiding future developments in disease resistance and management. In this regard, this study used RNAseq technology to compare the transcriptomic profiles of R. necatrix during infection of susceptible avocado `Dusa´ roots with that obtained from the fungus cultured in rich medium. The transcriptomes from three biological replicates of R. necatrix colonizing avocado roots (RC) and R. necatrix growing on potato dextrose agar media (PDA) were obtained using Illumina sequencing. A total of 12,104 transcripts were obtained, among which 1937 were differentially expressed genes (DEG), 137 exclusively expressed in RC and 160 and PDA. Interestingly genes involved in the production of fungal toxins, detoxification of toxic compounds, hormone biosynthesis, gene silencing and plant cell wall degradation were overexpressed during the infection process. In addition, 23 out of the 137 contigs, only expressed during R. necatrix growth on avocado roots, were predicted as candidate effector proteins (CEP) by the CSIRO tool with a probability above 60%. The PHI (Pathogen Host Interaction) database revealed that 11 R. necatrix CEP were previously annotated as effectors genes proven experimentally via pathogen-host interaction.
Project description:This study evaluated the ammonium oxidizing communities (COA) associated with a potato crop (Solanum phureja) rhizosphere soil in the savannah of Bogotá (Colombia) by examining the presence and abundance of amoA enzyme genes and transcripts by qPCR and next-generation sequence analysis. amoA gene abundance could not be quantified by qPCR due to problems inherent in the primers; however, the melting curve analysis detected increased fluorescence for Bacterial communities but not for Archaeal communities. Transcriptome analysis by next-generation sequencing revealed that the majority of reads mapped to ammonium-oxidizing Archaea, suggesting that this activity is primarily governed by the microbial group of the Crenarchaeota phylum. In contrast,a lower number of reads mapped to ammonia-oxidizing bacteria.