Project description:The dynamics governing the movement of the radon are complex and dependent on many factors. In the present study, we characterise the nature of temporal variations of 2-hourly and daily radon measurements in several monitoring sites of the Italian Radon mOnitoring Network (IRON) in Italy. By means of continuous wavelet transformation, a spectral analysis in time-frequency domain is performed. The results reveal that there are sub-daily, daily and yearly persistent periodicities that are common for all the stations. We observe structural seasonal breaks, that occur at the same frequency but at distinct time. Variations in radon concentration and local temperature are studied in terms of frequency contents and synchronicity. When analysing several long time series together, it is evident that the phase difference at low frequency movements (365-day period) between the radon and local temperature time series is depending on the sites' location and therefore strongly controlled by local factors. This could at least partially explain the apparently contrasting results available in the literature obtained investigating smaller dataset about the relationships between temperature and radon variations. On the other hand, results show that all radon time series are characterised by marked cycles at 1 and 365-days and less evident cycles at 0.5-day and 180-days. They would be all ascribable to environmental-climatic factors: the short-period cycles to temperature and pressure variations, the long-period cycles also to seasonal rainfall variations.
Project description:Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's fine-scale behaviour observed over a two weeks in May 2014.
Project description:Monitoring the biodiversity of key habitats and understanding the drivers across spatial scales is essential for preserving ecosystem functions and associated services. Coralligenous reefs are threatened marine biodiversity hotspots that are challenging to monitor. As fish sounds reflect biodiversity in other habitats, we unveiled the biogeography of coralligenous reef sounds across the north-western Mediterranean using data from 27 sites covering 2000 km and 3 regions over a 3-year period. We assessed how acoustic biodiversity is related to habitat parameters and environmental status. We identified 28 putative fish sound types, which is up to four times as many as recorded in other Mediterranean habitats. 40% of these sounds are not found in other coastal habitats, thus strongly related to coralligenous reefs. Acoustic diversity differed between geographical regions. Ubiquitous sound types were identified, including sounds from top-predator species and others that were more specifically related to the presence of ecosystem engineers (red coral, gorgonians), which are key players in maintaining habitat function. The main determinants of acoustic community composition were depth and percentage coverage of coralligenous outcrops, suggesting that fish-related acoustic communities exhibit bathymetric stratification and are related to benthic reef assemblages. Multivariate analysis also revealed that acoustic communities can reflect different environmental states. This study presents the first large-scale map of acoustic fish biodiversity providing insights into the ichthyofauna that is otherwise difficult to assess because of reduced diving times. It also highlights the potential of passive acoustics in providing new aspects of the correlates of biogeographical patterns of this emblematic habitat relevant for monitoring and conservation.
Project description:For the purpose of Covid-19 antibody testing, the human plasma samples acquired over a period of 310 days from August 18, 2021, to June 22, 2022, were subjected to DIA- LC-MS proteomics analysis.
Project description:BackgroundSeasonality in tuberculosis (TB) has been found in different parts of the world, showing a peak in spring/summer and a trough in autumn/winter. The evidence is less clear which factors drive seasonality. It was our aim to identify and evaluate seasonality in the notifications of TB in Germany, additionally investigating the possible variance of seasonality by disease site, sex and age group.MethodsWe conducted an integer-valued time series analysis using national surveillance data. We analysed the reported monthly numbers of started treatments between 2004 and 2014 for all notified TB cases and stratified by disease site, sex and age group.ResultsWe detected seasonality in the extra-pulmonary TB cases (N = 11,219), with peaks in late spring/summer and troughs in fall/winter. For all TB notifications together (N = 51,090) and for pulmonary TB only (N = 39,714) we did not find a distinct seasonality. Additional stratified analyses did not reveal any clear differences between age groups, the sexes, or between active and passive case finding.ConclusionWe found seasonality in extra-pulmonary TB only, indicating that seasonality of disease onset might be specific to the disease site. This could point towards differences in disease progression between the different clinical disease manifestations. Sex appears not to be an important driver of seasonality, whereas the role of age remains unclear as this could not be sufficiently investigated.
Project description:Studies describing the parasite fauna of sunfish species from the Mediterranean Sea are to date limited, despite information gained through parasitological examination may reveal unknown ecological and biological aspects of both hosts and parasites. Moreover, recent molecular studies on sunfish taxonomy revealed the presence of two species belonging to the genus Mola in the Mediterranean basin, namely M. mola and M. alexandrini. These two fish taxa have long been synonymized or confused among them, which implies that the majority of the studies carried out so far reported the parasites infecting both species under a single host species, generally referred to as M. mola. We hereby investigated the parasite fauna of a 43 cm long M. mola specimen from the Mediterranean Sea, whose identification was confirmed by molecular tool, and provided the first evidence of the occurrence of the nematode Anisakis simplex (s.s.) and of the cestode Gymnorhynchus isuri in Mola species anywhere. The use of helminth species as biological tags for the sunfish is also discussed.