Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (i.e., bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of global gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated sand, compared to regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing polycyclic aromatic hydrocarbons such as dioxins, dibenzofurans and other chlorinated congeners. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well during growth and stationary phase in sand. Cells during transition resemble going through stationary phase, showing evidence of stress responses and nutrient scavenging, and even of major adjustments in their primary metabolism if they were not pre-cultured on the same contaminant as found in the soil. Cells growing and surviving in soil show very different signatures as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous soil-specific expressed genes. We conclude that studies focusing on inoculation efficacy should test behavior under conditions as closely as possible mimicking the intended microbiome conditions
Project description:The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (i.e., bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of global gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated sand, compared to regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing polycyclic aromatic hydrocarbons such as dioxins, dibenzofurans and other chlorinated congeners. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well during growth and stationary phase in sand. Cells during transition resemble going through stationary phase, showing evidence of stress responses and nutrient scavenging, and even of major adjustments in their primary metabolism if they were not pre-cultured on the same contaminant as found in the soil. Cells growing and surviving in soil show very different signatures as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous soil-specific expressed genes. We conclude that studies focusing on inoculation efficacy should test behavior under conditions as closely as possible mimicking the intended microbiome conditions.
Project description:The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (i.e., bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of global gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated sand, compared to regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing polycyclic aromatic hydrocarbons such as dioxins, dibenzofurans and other chlorinated congeners. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well during growth and stationary phase in sand. Cells during transition resemble going through stationary phase, showing evidence of stress responses and nutrient scavenging, and even of major adjustments in their primary metabolism if they were not pre-cultured on the same contaminant as found in the soil. Cells growing and surviving in soil show very different signatures as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous soil-specific expressed genes. We conclude that studies focusing on inoculation efficacy should test behavior under conditions as closely as possible mimicking the intended microbiome conditions. We were interested to study the global reactions of bacteria with biodegradative properties under near-environmental as compared to laboratory culture conditions. We compared here the genome-wide responses of RW1 between regular laboratory batch growth on the aromatic substrates DBF and salicylate with growth in sandy soil with or without the same aromatic compounds. We analysed the cellular reactions immediately after introduction into the sand, during exponential growth and at stationary phase, all in carefully controlled and replicated experimental conditions.
Project description:The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (i.e., bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of global gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated sand, compared to regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing polycyclic aromatic hydrocarbons such as dioxins, dibenzofurans and other chlorinated congeners. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well during growth and stationary phase in sand. Cells during transition resemble going through stationary phase, showing evidence of stress responses and nutrient scavenging, and even of major adjustments in their primary metabolism if they were not pre-cultured on the same contaminant as found in the soil. Cells growing and surviving in soil show very different signatures as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous soil-specific expressed genes. We conclude that studies focusing on inoculation efficacy should test behavior under conditions as closely as possible mimicking the intended microbiome conditions We were interested to study the global reactions of bacteria with biodegradative properties under near-environmental as compared to laboratory culture conditions. we compared here the genome-wide responses of RW1 between regular laboratory batch growth on the aromatic substrates DBF and salicylate with growth in sandy soil with or without the same aromatic compounds. We analysed the cellular reactions immediately after introduction into the sand, during lag phase, all in carefully controlled and replicated experimental conditions.