Project description:Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) belong to the genus Benyvirus. Both viruses share a similar genome organization, but disease development induced in their major host plant sugar beet displays striking differences. BNYVV induces excessive lateral root (LR) formation by hijacking auxin-regulated pathways; whereas BSBMV infected roots appear asymptomatic. To elucidate transcriptomic changes associated with the virus-specific disease development of BNYVV and BSBMV, we performed a comparative transcriptome analysis of a virus infected susceptible sugar beet genotype.
Project description:Background: Sugar beet is an important root crop, accounting for 30 % of the sugar production worldwide. The long growing season make sugar beets exposed to a range of plant pathogens for longer periods than most other crops. Here, contrasting sugar beet genotypes were used for transcriptome analysis to reveal differential responses and new defense genes to Rhizoctonia solani, a soilborn fungal pathogen. Results: After curation of primary RNA-sequencing reads, 16,768 genes deriving from 36 samples composed of two susceptible and two resistant sugar beet genotypes, three time-points (0, two and five days post inoculation), each in three replicates were subjected for analysis. Among the elevated 217 transcripts at 2 dpi, three resistance-like genes (Bv4_088600_cumk, Bv8u_204980_frqg, and Bv_44840_iifo) were activated. By employing edgeR package statistics, 660 genes were significantly different (false discovery rate < 0.05) between resistant and susceptible genotypes in their response to R. solani inoculation. A combination of eukaryotic orthologous group assignments and gene ontology enrichment analyses, revealed three Bet v I/Major latex protein homologous genes (Bv7_162510_pymu, Bv7_162520_etow, Bv_27270_xeas) in the resistant genotypes after five days of fungal challenge. Co-expression network analysis of differentially expressed sugar beet genes further identified a MYB46 transcription factor, a plant disease resistance response protein (DRR206) and a flavonoid o-methyltransferase protein. MYB46 has a key function in secondary cell wall formation and exist as a singleton in the sugar beet genome. The genome of R. solani is enriched in cell wall degrading enzyme encoding genes and it is anticipated that they represent important virulence factors. Compared to Arabidopsis thaliana, sugar beet has 2.4-fold more carbohydrate esterases and particularly large numbers (26-fold) of auxiliary activity encoding genes whose function in cell wall biosynthesis is largely unknown. Conclusions: Based on components identified in this sugar beet transcript data set we conclude that defense responses to R. solani are attributed to a wide range of gene categories but functional information is missing to a large extent. This calls for careful integration to avoid negative side effects to obtain optimal combinations of these traits in order to reach the long-term goal of improved resistance in sugar beet.
Project description:To identify known and novel miRNAs involved in the response and adaptation of sugar beet to short-term and long-term alkaline stress, miRNAs were identified by analysis of the deep sequencing of sRNA
Project description:Sugar beet (Beta vulgaris subsp. vulgaris) is an economically important crop and provides nearly one third of the global sugar production annually. The beet cyst nematode (BCN), Heterodera schachtii, causes major yield losses in sugar beet worldwide. The most effective and economic approach to control this nematode is growing tolerant or resistant cultivars. To identify candidate genes involved in susceptibility and resistance, the transcriptome of sugar beet and BCN in compatible and incompatible interactions at two time points, was studied using mRNA-seq. In total, 16 cDNA libraries were constructed and 442 691 707raw reads were obtained. In the compatible interaction, many alterations in phytohormone-related genes were detected. The effect of exogenous application of methyl jasmonate and ethephon was therefore investigated and the results revealed significant reduction of J2s infection and female development rates in treated susceptible plants. Our results revealed candidate genes putatively involved in the Hs1pro1-induced resistance, such as genes related to phenylpropanoid pathway, putative R genes and genes encoding F-box proteins, zinc finger and NAC transcription factors, ABC transporters, BURP and CYSTM proteins. Also, the transcriptome of BCN in the infected root samples was analyzed and several nematode effector genes were found. Our study is the first investigation of the transcriptome profile in the compatible and incompatible interactions between sugar beet and BCN.