Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:UNC13A contains a novel cryptic exon which is expressed upon TDP-43 knockdown. However, it also features TDP-43 regulated intron retention of a downstream intron. To investigate the correlation of these two events, we performed Nanopore sequencing of amplicons from SHSY5Y cells with inducible TDP-43 knockdown, and FTD patient RNA samples
Project description:EATRO1125 bloodstream forms grown to about 5 x 10e5 per ml. Lister 427 procyclic forms at no more than 2 million per ml. Direct nanopore sequencing on cells approaching their expiration date.
Project description:5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we benchmark 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assess the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens new means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. Here we demonstrate the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.