Project description:Statin-induced myotoxicity (SIM) is one of the principal reasons for atorvastatin (AT) non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. To date, the genetic mechanism of SIM is far from well-illustrated. Published data in vitro and in vivo indicated that atorvastatin lactone (ATL) is the key metabolite to induce myotoxicity. We therefore hypothesis that genetic variants increasing the formation of ATL can increase the risk to statin-induced myotoxicity. And a transcriptome-wide association study (TWAS) integrating genome wide variants and gene expression data will applied to identify expression quantitative trait loci (eQTL) associated with the formation of ATL and different bioinformatic tools will then be applied to reveal the potential causal impact of eQTLs on the formation of ATL.
Project description:We performed a genome-wide association study in pooled DNA samples from patients with severe statin myopathy and persistent symptoms post-therapy versus pooled DNAs from an age-adjusted statin-tolerant group. Affymetrix 100K SNP arrays were used according to the manufacturers instructions with two pools of 19 and 20 statin myopathy patients and two pools of 20 statin-tolerant controls.
Project description:We performed a genome-wide association study in pooled DNA samples from patients with severe statin myopathy and persistent symptoms post-therapy versus pooled DNAs from an age-adjusted statin-tolerant group.
Project description:Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of patients taking statins experience muscle related adverse events. Myalgia, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels, is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin-associated myalgia are not clearly understood. To elucidate changes in gene expression associated with statin-induced myalgia, we compared profiles of gene expression in the biopsied skeletal muscle from statin-intolerant patients undergoing statin re-challenge versus those of statin-tolerant controls. A robust separation of statin-intolerant and statin-tolerant cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of statin intolerant patients, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals are genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myopathy were observed with increased frequency among statin-intolerant study subjects.
Project description:We have previously identified a number of statin-responsive genes in human cell lines, but in some cases, these findings may not be relevant in vivo. Here, we statin exposed primary human hepatocytes from four different donors to identify statin-responsive genes in this biologically relevant cell type. We also compared the effects of statin on gene expression between these primary cells and our previous datasets in other cell lines to identify overlapping effects of interest.
Project description:Global gene expression profiling was performed on paired tumor biopsies collected before and after 2 weeks of statin treatment with the aim of detecting statin induced changes on tumoral gene expression. In this phase II clinical study using the “window-of-opportunity” design, in which the treatment-free window between a cancer diagnosis and surgical tumor resection is used to study the biological effects of a certain drug, atorvastatin, a lipophilic statin, was prescribed to patients with primary breast cancer for two weeks pre-operatively. Tumor samples subjected to whole genome transcriptional profiling were collected before patients started treatment and after completing treatment.
Project description:Global gene expression profiling was performed on [1] paired tumor biopsies collected before and after 2 weeks of statin treatment [2] a collection of breast cancer cells lines following 48hrs of atorvastatin treatment with the aim of detecting statin induced transcriptional changes in breast cancer cells in-vitro.
Project description:We perform the first two-stage GWAS on TB in the Chinese population. We examined 900,015 genetic variants in 1,008 TB patients using the HumanOmniZhongHua-8 v1.1 BeadChip.
Project description:Statin-induced myopathy is a common side-effect but its mechanisms in human skeletal muscle have never been explained satisfyingly. We exposed 25 different primary human muscle cell lines to either a lipophilic or a hydrophilic statin, quantified cholesterol, mevalonate, proliferation, differentiation, and performed a comprehensive transcriptome and proteome analysis. We found reduced mevalonic acid (MVA) and cholesterol levels demonstrating incorporation of statins into the cells. Statins also significantly impaired proliferation and differentiation. Using an integrated pathway analysis approach with transcriptome and proteome data from statin-treated human primary myotubes, we modelled a novel statin-induced metabolism network for human muscle cells. This analysis confirmed the effect of statins on cholesterol biosynthesis but also uncovered alterations of acetyl CoA-dependent lipid and fatty acid metabolism