Project description:transcriptome changes in pea leaves with sulfur deficency/sufficiency during reproductive phase.-Characterization of transcriptome changes in leaves of wild-type and PsSultr4 mutant lines (for a sulfur transporter) subjected or not to sulfur deficiency during the reproductive phase 4plex_pea_2014_01 - transcriptome changes in pea leaves with sulfur deficency/sufficiency during reproductive phase. - Role of sulfur and of the sulfate store in leaf metabolism. - Comparison of: 1- The leaf transcriptome of pea subjected or not to sulfur deficiency during the reproductive phase (S+ versus S –) 2- The leaf transcriptome of wild-type and mutant lines for a sulfur transporter (two TILLING alleles) grown under sulfur sufficient conditions : WT1/Mut1 S+ et WT2/Mut2 S+ 3- The leaf transcriptome of wild-type and mutant lines for a sulfur transporter (two TILLING alleles) grown under sulfur deficient conditions : WT1/Mut1 S+ et WT2/Mut2 S+
Project description:12plex_pea_2013_02 - 12plex_pea_2013_02_g - What is the effect of a moderate water stress on seed filling (reserve accumulation) and nitrogen remobilisation in pea (Pisum sativum) - Pea plants (genotype Cameor) were subjected to a moderate water stress at the beggining of the seed filling period (12 Days After Pollination) of the second flowering node for a period of 8 days. Samples were collected from Well Watered (WW) plants at the beginning of the stress imposition (point A, T=0), and from Water-Stressed (WS) and WW control plants at the end of the drought period (point B, T=+8). Samples named SEED consisted of seeds from the pod of the second flowering node (seed-WW-A, seed-WW-B and Seed-WS-B). Samples named LEAF consisted of the leaves and stem sections from the two vegetative nodes below the first flowering node (leaf-WW-A, Leaf-WW-B and Leaf-WS-B). Each sample consited of a pool of 3 individual plants and 4 repetitions per condition were carried out.
Project description:12plex_pea_2013_02 - 12plex_pea_2013_02_f - What is the effect of a moderate water stress on seed filling (reserve accumulation) and nitrogen remobilisation in pea (Pisum sativum) - Pea plants (genotype Cameor) were subjected to a moderate water stress at the beggining of the seed filling period (12 Days After Pollination) of the second flowering node for a period of 8 days. Samples were collected from Well Watered (WW) plants at the beginning of the stress imposition (point A, T=0), and from Water-Stressed (WS) and WW control plants at the end of the drought period (point B, T=+8). Samples named SEED consisted of seeds from the pod of the second flowering node (seed-WW-A, seed-WW-B and Seed-WS-B). Samples named LEAF consisted of the leaves and stem sections from the two vegetative nodes below the first flowering node (leaf-WW-A, Leaf-WW-B and Leaf-WS-B). Each sample consited of a pool of 3 individual plants and 4 repetitions per condition were carried out.
Project description:We performed a transcriptome analysis of interior spruce (Picea glauca x engelmannii) bark response to weevil (Pissodes strobi) feeding using 21.8K spruce microarray (that contains 21.8 thousand unique transcripts). This microarray study revealed a large rearrangement of the interior spruce bark transcriptome in response to weevil feeding involving differential expression of close to 20% of the studied transcriptome.
Project description:To explore the bacterial community profile of the gut of the African palm weevil and to identify the abundance and diversity of lignin degradation-associated bacteria in each gut segment.
Project description:The legume pest Sitona callosus poses a significant threat to alfalfa growth. Due to its unique life cycle, Beauveria bassiana has emerged as an effective fungus for controlling S. callosus . We conducted a comprehensive analysis of the transcriptome and metabolome of S. callosus infected by B. bassiana. Differential expression of antifungal genes, including heat shock genes, cytochrome P450 (CYP450) genes, cathepsin proteases, and C-type lectin were identified in S. callosus. Pathway analysis revealed associations between immune genes and metabolites involved in autophagy-animal, glucagon signaling pathway, and glycerophospholipid metabolism. These findings provide valuable insights for enhancing the control efficacy of Beauveria bassiana on Sitona callosus.