Project description:Amphibian populations around the world are threatened by an emerging infectious pathogen, the chytrid fungus Batrachochytrium dendrobatidis (Bd). How can a fungal skin infection kill such a broad range of amphibian hosts? And why are certain species particularly susceptible to the impacts of Bd? Here we use a genomics approach to understand the genetic response of multiple susceptible frog species to Bd infection. We characterize the transcriptomes of two closely-related endangered frog species (Rana muscosa and Rana sierrae) and analyze whole genome expression profiles from frogs in controlled Bd-infection experiments. We integrate the Rana results with a comparable dataset from a more distantly-related susceptible species (Silurana tropicalis). We demonstrate that Bd-infected frogs show massive disruption of skin function and show no evidence of a robust immune response. The genetic response to infection is shared across the focal susceptible species, suggesting a common effect of Bd on susceptible frogs.
Project description:Foxtail millet (Setaria italica L. P. Beauv) has been considered as a tractable model crop in recent years due to its short growing cycle, lower repetitive DNA, inbreeding nature, small diploid genome, and outstanding abiotic stress-tolerance characteristics. With modern agriculture often facing various adversities, it’s urgent to dissect the mechanisms of how foxtail millet responds and adapts to drought and stress on the proteomic-level.
Project description:This experiment examined the transcriptional response of juvenile amphibian hosts (common frog, Rana temporaria) to two important amphibian pathogens: Batrachochytrium dendrobatidis (Bd) and Ranavirus. Common frogs are non-model organisms which do not have a reference genome.